MATH4900E Team 4 Presentation

Lau Wang Chi, Elton Kan Ho Lam, Colin

19 October, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Table of Contents

1. Arc-length on $\mathbb H$

- 2. Geodesics in $\mathbb H$ and $\mathbb D$
- 3. Classification of Möbius transformation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

4. Convex set in upper half plane

Table of Contents

1. Arc-length on $\mathbb H$

2. Geodesics in $\mathbb H$ and $\mathbb D$

3. Classification of Möbius transformation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

4. Convex set in upper half plane

Path in \mathbb{R}^2

A path in the plane \mathbb{R}^2 is a differentiable function $f : [a, b] \to \mathbb{R}^2$, given by f(t) = (x(t), y(t)), where x(t) and y(t) are differentiable functions of t and where [a, b] is some interval in \mathbb{R} . The image of an interval [a, b] under a path f is a *curve* in \mathbb{R}^2 .

The *Euclidean length* of f is given by the integral

$$length(f) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where $\sqrt{(x'(t))^2 + (y'(t))^2} dt$ is the element of arc-length in \mathbb{R}^2 .

If we view *f* as a path into \mathbb{C} instead of \mathbb{R}^2 and write f(t) = x(t) + y(t)i, we can rewrite the integral as

$$length(f) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{a}^{b} |f'(t)| dt,$$

and represent the standard element of arc-length in $\mathbb C$ as

$$|dz| = |f'(t)|dt.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Path Integral

Let $\rho : \mathbb{C} \to \mathbb{R}$ be a continuous function. For a differentiable path $f : [a, b] \to \mathbb{C}$, we define the length of f with respect to the element of arc-length $\rho(z)|dz|$ to be the path integral

$$length_{
ho}(f) = \int_{f}
ho(z) |dz| = \int_{a}^{b}
ho(f(t)) |f'(t)| dt$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Question: What will happen to the length of a path $f : [a, b] \to \mathbb{C}$ with respect to the element of arc-length $\rho(z)|dz|$ when the domain of f is changed?

i.e. Suppose $h : [\alpha, \beta] \to [a, b]$ is a surjective differentiable function such that $[a, b] = h([\alpha, \beta])$, and construct a new path by taking the composition $g = f \circ h$. How are $length_{\rho}(f)$ and $length_{\rho}(g)$ related?

The length of f with respect to $\rho(z)|dz|$ is the path integral

$$length_{
ho}(f) = \int_{f}
ho(z) |dz|$$

= $\int_{a}^{b}
ho(f(t)) |f'(t)| dt,$

while the length of g with respect to $\rho(z)|dz|$ is the path integral

$$length_{\rho}(g) = \int_{\alpha}^{\beta} \rho(g(t))|g'(t)|dt$$
$$= \int_{\alpha}^{\beta} \rho((f \circ h)(t))|(f \circ h)'(t)|dt$$
$$= \int_{\alpha}^{\beta} \rho(f(h(t)))|(f'(h(t)))|h'(t)|dt.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

If $h'(t) \ge 0$ for all t in $[\alpha, \beta]$, then

$$length_{\rho}(g) = \int_{\alpha}^{\beta} \rho(f(h(t))) |(f'(h(t)))| h'(t)| dt$$
$$= \int_{a}^{b} \rho(f(s)) |f'(s)| ds = length_{\rho}(f).$$

with substitution s = h(t). If $h'(t) \le 0$ for all t in $[\alpha, \beta]$, then

$$length_{\rho}(g) = \int_{\alpha}^{\beta} \rho(f(h(t)))|(f'(h(t)))|h'(t)|dt$$
$$= -\int_{a}^{b} \rho(f(s))|f'(s)|ds = length_{\rho}(f).$$

- コン・4回シュービン・4回シューレー

with substitution s = h(t).

So if either $h'(t) \ge 0$ or $h'(t) \le 0$ for all t in $[\alpha, \beta]$, we have

$$length_{\rho}(f) = length_{\rho}(f \circ h),$$

where $f : [a, b] \to \mathbb{C}$ is a piecewise differentiable path and $h : [\alpha, \beta] \to [a, b]$ is differentiable. In this case, we refer to $f \circ h$ as a *reparametriaztion* of f.

Proposition 1

Let $f : [a, b] \to \mathbb{C}$ be a piecewise differentiable path, let $[\alpha, \beta]$ be another interval, and let $h : [\alpha, \beta] \to [a, b]$ be a surjective differentiable function. Let $\rho(z)|dz|$ be an element of arc-length on \mathbb{C} . Then

$$length_{\rho}(f \circ h) \geq length_{\rho}(f).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let $\rho(z)|dz|$ be an element of arc-length on \mathbb{H} that is a conformal distortion of the standard element of arc-length, so that the length of a piecewise differentiable path $f : [a, b] \to \mathbb{H}$ is given by the integral

$$length_{
ho}(f) = \int_{f}
ho(z) |dz| = \int_{a}^{b}
ho(f(t)) |f'(t)| dt$$

By the phrase *length is invariant* under the action of $M\ddot{o}b(\mathbb{H})$, for every piecewise differentiable path $f : [a, b] \to \mathbb{H}$ and every element γ of $M\ddot{o}b(\mathbb{H})$, we have

$$length_{\rho}(f) = length_{\rho}(\gamma \circ f).$$

Proposition 2

Let γ be a *Möbius* transformation of \mathbb{H} . Let $z, z' \in \mathbb{H}$ and let δ be a path from z to z'. Then $length_{\mathbb{H}}(\gamma \circ \delta) = length_{\mathbb{H}}(\delta)$.

Proof.

Let $\gamma(z) = \frac{az+b}{cz+d}$ where $a, b, c, d \in \mathbb{R}$ and ad - bc > 0. It is an easy calculation to check that for any $z \in \mathbb{H}$,

$$|\gamma'(z)| = rac{ad-bc}{|cz+d|^2}$$

and

$$Im(\gamma(z)) = rac{ad-bc}{|cz+d|^2}Im(z).$$

Let $\delta:[0,1]\to\mathbb{H}$ be a parametrization of $\delta.$ Then by chain rule,

$$\begin{split} length_{\mathbb{H}}(\gamma \circ \delta) &= \int_{0}^{1} \frac{|(\gamma \circ \delta)'(t)|}{Im(\gamma \circ \delta)(t)} dt \\ &= \int_{0}^{1} \frac{|\gamma'(\delta(t))| |\delta'(t)|}{Im(\gamma \circ \delta)(t)} dt \\ &= \int_{0}^{1} \frac{ad - bc}{|c\delta(t) + d|^{2}} |\delta'(t)| \frac{|c\delta(t) + d|^{2}}{ad - bc} \frac{1}{Im(\delta(t))} dt \\ &= \int_{0}^{1} \frac{|\delta'(t)|}{Im(\delta(t))} dt \\ &= length_{\mathbb{H}}(\delta). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Since

$$length_{\rho}(\gamma \circ f) = \int_{a}^{b} \rho((\gamma \circ f)(t))|(\gamma \circ f)'(t))|dt$$
$$= \int_{a}^{b} \rho((\gamma \circ f)(t))|\gamma'(f(t))||f'(t)|dt$$

and

$$length_{\rho}(f) = \int_{a}^{b} \rho(f(t)) |f'(t)| dt,$$

we have

$$\int_a^b \rho(f(t))|f'(t)|dt = \int_a^b \rho((\gamma \circ f)(t))|\gamma'(f(t))||f'(t)|dt$$

for every piecewise differentiable path $f : [a, b] \to \mathbb{H}$ and every element γ of $M\ddot{o}b^+(\mathbb{H})$.

Equivalently, this can be written as

$$\int_a^b (\rho(f(t)) - \rho((\gamma \circ f)(t))|\gamma'(f(t))|)|f'(t)|dt = 0$$

for every piecewise differentiable path $f : [a, b] \to \mathbb{H}$ and every element γ of $M\ddot{o}b^+(\mathbb{H})$. For an element γ of $M\ddot{o}b^+(\mathbb{H})$, set

$$\mu_{\gamma}(z) = \rho(z) - \rho(\gamma(z))|\gamma'(z)|,$$

so that the condition on $\rho(z)$ becomes a condition on $\mu_{\gamma}(z)$, that is

$$\int_f \mu_\gamma(z) |dz| = \int_a^b \mu_\gamma(f(t)) |f'(t)| dt = 0$$

for every piecewise differentiable path $f : [a, b] \to \mathbb{H}$ and every element γ of $M\ddot{o}b^+(\mathbb{H})$.

Lemma 3

Let *D* of an open set of \mathbb{C} , let $\mu : D \to \mathbb{R}$ be a continuous function, and suppose that $\int_f \mu(z) |dz| = 0$ for every piecewise differentiable path $f : [a, b] \to D$. Then $\mu \equiv 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Proof

We do by contradiction.

Suppose there exists a point $z \in D$ at which $\mu(z) \neq 0$. Replacing μ by $-\mu$ if necessary, we may assume that $\mu(z) > 0$.

Since μ is continuous, for each $\varepsilon > 0$, there exists $\delta > 0$ such that $U_{\delta}(z) \subset D$ and $w \in U_{\delta}(z)$ implies that $\mu(w) \in U_{\varepsilon}(\mu(z))$, where

$$U_{\delta}(z) = u \in \mathbb{C} : |u - z| < \delta$$

and

$$U_{\varepsilon}(t) = s \in \mathbb{R} : |s-t| < \varepsilon.$$

Taking $\varepsilon = \frac{1}{3}|\mu(z)|$, we see that there exists $\delta > 0$ so that $w \in U_{\delta}(z)$ implies that $\mu(w) \in U_{\varepsilon}(\mu(z))$. Using the triangle inequality and the fact that $\mu(z) > 0$, this implies that $\mu(w) > 0$ for all $w \in U_{\delta}(z)$. We now choose a specific non-constant piecewise differentiable path, namely the path $f : [0, 1] \rightarrow U_{\delta}(z)$ given by

$$f(t) = z + \frac{1}{3}\delta t.$$

Observe that $\mu(f(t)) > 0$ for all t in [0, 1], since $f(t) \in U_{\delta}(z)$ for all t in [0,1]. In particular, we have that $\int_{f} \mu(z) |dz| > 0$, which gives the desired contradiction.

Hence by the lemma, we have

$$\mu_\gamma(z)=
ho(z)-
ho(\gamma(z))|\gamma'(z)|=0$$

for every $z \in \mathbb{H}$ and every element γ of $M\ddot{o}b^+(\mathbb{H})$. We now consider how μ_{γ} behaves under composition of elements of $M\ddot{o}b^+(\mathbb{H})$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let γ and φ be two elements in $M\ddot{o}b^+(\mathbb{H})$.

$$\begin{split} \mu_{\gamma \circ \varphi}(z) &= \rho(z) - \rho((\gamma \circ \varphi)(z)) |(\gamma \circ \varphi)'(z)| \\ &= \rho(z) - \rho((\gamma \circ \varphi)(z)) |\gamma'(\varphi(z))| |\varphi'(z)| \\ &= \rho(z) - \rho(\varphi(z)) |\varphi'(z)| + \rho(\varphi(z)) |\varphi'(z)| \\ &- |\rho((\gamma \circ \varphi)(z))|\gamma'(\varphi(z))| |\varphi'(z)| \\ &= \mu_{\varphi}(z) + \mu_{\gamma}(\varphi(z)) |\varphi'(z)|. \end{split}$$

In particular, if $\mu_{\gamma} \equiv 0$ for every γ in a generating set for $M\ddot{o}b^+(\mathbb{H})$, then $\mu_{\gamma} \equiv 0$ for every element γ of $M\ddot{o}b^+(\mathbb{H})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $M\ddot{o}b(\mathbb{H})$ is generated by elements of the form m(z) = az + b for a > 0 and $b \in \mathbb{R}$, $K(z) = \frac{-1}{z}$, and $B(z) = -\overline{z}$.

Note that the elements listed as generators are all elements of $M\ddot{o}b(\mathbb{H})$. Also note that every element of $M\ddot{o}b(\mathbb{H})$ has either the form

$$m(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{R}$ and ad - bc = 1, or the form

$$n(z)=\frac{a\overline{z}+b}{c\overline{z}+d},$$

where a, b, c, d is purely imaginary and ad - bc = 1.

If c = 0, then $m(z) = \frac{a}{d}z + \frac{b}{d}$. Since ad - bc = ad = 1, we have $\frac{a}{d} = a^2 > 0$. If $c \neq 0$, then m(z) = f(K(g(z))), where $g(z) = c^2z + cd$ and $f(z) = z + \frac{a}{c}$. Note that $B \circ n = m$, where *m* is an element of $M\ddot{o}b(\mathbb{H})$, we can write $n = B^{-1} \circ m = B \circ m$.

Then we consider a generator $\gamma(z) = z + b$ for $b \in \mathbb{R}$ first. Since $\gamma'(z) = 1$ for every $z \in \mathbb{H}$, the condition imposed on $\rho(z)$ is that

$$0 \equiv \mu_{\gamma}(z) = \rho(z) - \rho(\gamma(z))|\gamma'(z)| = \rho(z) - \rho(z+b)$$

for every $z \in \mathbb{H}$ and every $b \in \mathbb{R}$. That is

$$\rho(z) = \rho(z+b)$$

for every $z \in \mathbb{H}$ and every $b \in \mathbb{R}$. In particular, $\rho(z)$ depends only on the imaginary part y = Im(z) of z = x + iy.

To see this explicitly, suppose that $z_1 = x_1 + iy$ and $z_2 = x_2 + iy$ have the same imaginary part, and write $z_2 = z_1 + (x_2 - x_1)$. Since $x_2 - x_1$ is real, we have $\rho(z_2) = \rho(z_1)$. Hence we may view ρ as a real-valued function of the single real variable $\gamma = Im(z)$. Explicitly, consider the real-valued function

 $r: (0, \infty) \to (0, \infty)$ given by $r(y) = \rho(iy)$, and note that $\rho(z) = r(Im(z))$ for every $z \in \mathbb{H}$.

Next we consider the generator $\gamma(z) = az$ for a > 0. Since $\gamma'(z) = a$ for every $z \in \mathbb{H}$, the condition imposed on $\rho(z)$ is that

$$0 \equiv \mu_{\gamma}(z) = \rho(z) - \rho(\gamma(z))|\gamma'(z)| = \rho(z) - a\rho(az)$$

for every $z \in \mathbb{H}$ and every a > 0. That is,

$$\rho(z) = a\rho(az)$$

for every $z \in \mathbb{H}$ and every a > 0. In particular, we have

$$r(y) = ar(ay)$$

for every y > 0 and every a > 0. Interchanging the roles of a and y, we see that r(a) = yr(ay). Dividing through by y, we obtain

$$r(ay) = \frac{1}{y}r(a).$$

Taking a = 1, this yields that

$$r(y) = \frac{1}{y}r(1),$$

and *r* is completely determined by its value at 1. Recalling the definition of *r*, we have the invariance of length under $M\ddot{o}b^+(\mathbb{H})$ implies that $\rho(z)$ has the form

$$\rho(z) = r(Im(z)) = \frac{c}{Im(z)},$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where *c* is an arbitrary positive constant.

We now take the transformations $K(z) = -\frac{1}{z}$ and $B(z) = -\overline{z}$ into our consideration.

Since $K'(z) = \frac{1}{z^2}$, the condition imposed on $\rho(z)$ is that

$$0=\mu_K(z)=
ho(z)-
ho(K(z))|K'(z)|=
ho(z)-
ho(-rac{1}{z})rac{1}{|z|^2}.$$

Substituting $\rho(z) = \frac{c}{Im(z)}$ and using

$$\rho(-\frac{1}{z}) = \rho(\frac{-\overline{z}}{|z|^2}) = \frac{c|z|^2}{Im(-\overline{z})} = \frac{c|z|^2}{Im(z)},$$

we obtain

$$ho(z)-
ho(-rac{1}{z})rac{1}{|z|^2}=rac{c}{Im(z)}-rac{c|z|^2}{Im(z)}rac{1}{|z|^2}=rac{c}{Im(z)}-rac{c}{Im(z)}=0.$$

・ロト・個ト・モト・モー シへの

Note that B'(z) is not defined. So we cannot check by doing similar calculations like in K(z). Instead we want to show

 $length(B \circ f) = length(f).$

Note that $B \circ f(t) = -x(t) + iy(t)$. Then $|(B \circ f)'(t)| = |f'(t)|$ and $Im(B \circ f)(t) = y(t) = Im(f(t))$, and so

$$length(B \circ f) = \int_{a}^{b} \frac{c}{Im((B \circ f)(t))} |(B \circ f)'(t)| dt$$
$$= \int_{a}^{b} \frac{c}{Im(f(t))} |f'(t)| dt = length(f).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Therefore we have the following theorem:

Theorem 4

For every positive constant *c*, the element of arc-length

$$rac{c}{Im(z)}|dz|$$

on \mathbb{H} is invariant under the action of $M\ddot{o}b(\mathbb{H})$. That is, for every piecewise differentiable path $f : [a, b] \to \mathbb{H}$ and every element γ of $M\ddot{o}b(\mathbb{H})$, we have that

$$length_{\rho}(f) = length_{\rho}(\gamma \circ f).$$

However, nothing we have done to this point has given us a way of determining a specific value of *c*. In fact, it is not possible to specify the value of *c* using solely the action of $M\ddot{o}b(\mathbb{H})$. To avoid carrying *c* through all our calculations, we set c = 1.

Example

For a real number $\lambda > 0$, let A_{λ} be the Euclidean line segment joining $-1 + i\lambda$ to $1 + i\lambda$, and let B_{λ} be the hyperbolic line segment joining $-1 + i\lambda$ to $1 + i\lambda$. Cauculate the lengths of A_{λ} and B_{λ} with respect to the element of arc-length $\frac{c}{Im(z)}|dz|$.

Solution.

We parametrize A_{λ} by the path $f : [-1, 1] \to \mathbb{H}$ given by $f(t) = t + i\lambda$.Since $Im(f(t)) = \lambda$ and |f'(t)| = 1, we see that

$$length(f) = \int_{-1}^{1} \frac{c}{\lambda} dt = \frac{2c}{\lambda}.$$

 B_{λ} lies on the Euclidean circle with Euclidean centre 0 and Euclidean radius $\sqrt{1 + \lambda^2}$. The Euclidean line segment between 0 and $1 + i\lambda$ makes angle θ with the positive real axis, where $cos(\theta) = \frac{1}{\sqrt{1 + \lambda^2}}$. So we can parametrize B_{λ} by the path $g : [\theta, \pi - \theta] \to \mathbb{H}$ given by $g(t) = \sqrt{1 + \lambda^2}e^{i\theta}$. Since $Im(g(t)) = \sqrt{1 + \lambda^2}sin(\theta)$ and $|g'(t)| = \sqrt{1 + \lambda^2}$, we see that

$$length(g) = \int_{\theta}^{\pi-\theta} c \csc(t) dt = c \ln[\frac{\sqrt{1+\lambda^2}+1}{\sqrt{1+\lambda^2}-1}].$$

- * ロト * 課 > * 注 > * 注 > ・ 注 ・ の < ()

For a piecewise differentiable path $f:[a,b]\to\mathbb{H},$ we define the hyperbolic length of f to be

$$length_{\mathbb{H}}(f) = \int_{f} \frac{1}{Im(z)} |dz| = \int_{a}^{b} \frac{1}{Im(f(t))} |f'(t)| dt.$$

Example

Take 0 < a < b and consider the path $f : [a, b] \to \mathbb{H}$ given by f(t) = it. The image f([a, b]) of [a, b] under f is the segment of the positive imaginary axis between ai and bi. Since Im(f(t)) = t and |f'(t)| = 1, we see that

$$length_{\mathbb{H}}(f) = \int_{f} \frac{1}{Im(z)} |dz| = \int_{a}^{b} \frac{1}{t} dt = ln[\frac{b}{a}].$$
Proposition 6

Let $f : [a, b] \to \mathbb{H}$ be a piecewise differentiable path. Then the hyperbolic length $length_{\mathbb{H}}(f)$ of f is finite. Note: this provides a way to estimate an upper bound for the hyperbolic length of a path in \mathbb{H} .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof

There exists a constant B > 0 so that the image f([a, b]) of [a, b] under f is contained in the subset

$$K_B = \{z \in \mathbb{H} | \mathit{Im}(z) \geq B\}$$

of \mathbb{H} . Given that f([a, b]) is contained in K_B , we can estimate the integral giving the hyperbolic length of f. We first note that by the definition of piecewise differentiable, there is a partition P of [a, b] inito subintervals

$$P = [a = a_0, a_1], [a_1, a_2], \dots, [a_n, a_{n+1} = b]$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

so that *f* is differentiable on each subinterval $[a_k, a_{k+1}]$.

In particular, its derivativ f' is continuous on each subinterval. By the extreme value theorem for a continuous function on a closed interval, there then exists for each k a number A_k so that

$$|f'(t)| \le A_k \,\forall t \in [a_k, a_{k+1}].$$

Let *A* be the maximum of $A_0, ..., A_n$. Then we have

$$length_H(f) = \int_a^b rac{1}{Im(f(t))} |f'(t)| dt \leq \int_a^b rac{1}{B} A \, dt = rac{A}{B} (b-a),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

which is finite.

Table of Contents

1. Arc-length on \mathbb{H}

2. Geodesics in $\mathbb H$ and $\mathbb D$

3. Classification of Möbius transformation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

4. Convex set in upper half plane

Definition 7

A *metric* on a set *X* is a function

$$d: X \times X \to \mathbb{R}$$

satisfying three conditions:

d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 if and only if x = y;
 d(x, y) = d(y, x); and
 d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).

Definition 8

Let *X* be a metric space with metric *d*. We say that (X, d) is a path metric space if for each pair of points *x* and *y* of *X* we have

$$d(x, y) = \inf\{ length(f) : f \in \Gamma[x, y] \},\$$

and for each pair of points *x* and *y* of *X*, there exists a distance realizing path in $\Gamma[x, y]$, which is a path *f* in $\Gamma[x, y]$ satisfying

$$d(x, y) = length(f).$$

Example

 (\mathbb{C}, n) is a path metric space while $(\mathbb{C} - \{0\}, n)$ is not, where n(x, y) = |x - y| on \mathbb{C} and $\mathbb{C} - \{0\} = X$ respectively.

Consider two points 1 and -1 in (X, n). The Euclidean line segment joining 1 to -1 passes through 0, and so is not a path in *X*. Every other path joining 1 to -1 has length strictly greater than

Theorem 9

 $(\mathbb{H}, d_{\mathbb{H}})$ is a path metric space. Moreover, the distance realizing path in $\Gamma[x, y]$ is a parametrization of the hyperbolic line segment joining *x* to *y*. (Proof: Omitted.)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Proposition 10

For every element γ of $M\ddot{o}b(\mathbb{H})$ and for every pair x and y of points of \mathbb{H} , we have

$$d_{\mathbb{H}}(x,y) = d_{\mathbb{H}}(\gamma(x),\gamma(y)).$$

Note: We call γ is an isometry of \mathbb{H} .

Proof.

Observe that $\gamma \circ f : f \in \Gamma[x, y] \subset \Gamma[\gamma(x), \gamma(y)]$. To see this, take a path $f : [a, b] \to \mathbb{H}$ in $\Gamma[x, y]$, so that f(a) = x and f(b) = y. Since $\gamma \circ f(a) = \gamma(x)$ and $\gamma \circ f(b) = \gamma(y)$, we have $\gamma \circ f$ lies in $\Gamma[\gamma(x), \gamma(y)]$.

Since $length_{\mathbb{H}}(f)$ is invariant under the action of $M\ddot{o}b(\mathbb{H})$, we have

$$\mathit{length}_{\mathbb{H}}(\gamma \circ f) = \mathit{length}_{\mathbb{H}}(f)$$

for every path f in $\Gamma[x, y]$, and

$$\begin{split} d_{\mathbb{H}}(\gamma(x),\gamma(y)) &= \inf\{ \operatorname{length}_{\mathbb{H}}(g) : g \in \Gamma[\gamma(x),\gamma(y)] \} \\ &\leq \inf\{ \operatorname{length}_{\mathbb{H}}(\gamma \circ f) : f \in \Gamma[x,y] \} \\ &\leq \inf\{ \operatorname{length}_{\mathbb{H}}(f) : f \in \Gamma[x,y] \} = d_{\mathbb{H}}(x,y). \end{split}$$

- コン・4回シュービン・4回シューレー

Since γ in invertible and γ^{-1} is an element of $M\ddot{o}b(\mathbb{H})$, we may repeat the argument to see that

$$\{\gamma^{-1} \circ g | g \in \Gamma[\gamma(x), \gamma(y)]\} \subset \Gamma[x, y],$$

and hence

$$\begin{split} d_{\mathbb{H}}(x,y) &= \inf\{ \operatorname{length}_{\mathbb{H}}(f) : f \in \Gamma[x,y] \} \\ &\leq \inf\{ \operatorname{length}_{\mathbb{H}}(\gamma^{-1} \circ g) : g \in \Gamma[\gamma(x),\gamma(y)] \} \\ &\leq \inf\{ \operatorname{length}_{\mathbb{H}}(g) : g \in \Gamma[\gamma(x),\gamma(y)] \} = d_{\mathbb{H}}(\gamma(x),\gamma(y)). \end{split}$$

Therefore we have $d_{\mathbb{H}}(x, y) = d_{\mathbb{H}}(\gamma(x), \gamma(y))$ and this completes the proof.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We now proceed to calculate the geodesics in \mathbb{H} . Geodesics is the paths of shortest distance in \mathbb{H} . In this section we will show that the imaginary axis is a geodesic. Then we will claim that any vertical straight line and any circle meeting the real axis orthogonally is also a geodesic. In here we denote \mathcal{H} the set of semi-circles orthogonal to \mathbb{R} and the vertical lines in the upper half-plane \mathbb{H} .

Proposition 11

Let a < b. Then the hyperbolic distance between *ia* and *ib* is $log \frac{b}{a}$. Moreover, the vertical line joining *ia* to *ib* is the unique path between *ia* and *ib* ith length $log \frac{b}{a}$; any other path from *ia* to *ib* has length strictly greater than $log \frac{b}{a}$.

leg ba

Proof

Let $\delta(t) = it$, $a \le t \le b$. Then δ is a path from *ia* to *ib*. Clearly $|\delta'(t)| = 1$ and $Im(\delta(t) = t$ so that

$$length_{\mathbb{H}}(\delta) = \int_{a}^{b} \frac{1}{t} dt = \log \frac{b}{a}.$$

Now let $\delta(t) = x(t) + iy(t) : [0, 1] \to \mathbb{H}$ be any path from *ia* to *ib*. Then

$$length_{\mathbb{H}}(\delta) = \int_{0}^{1} \frac{\sqrt{x'(t)^{2} + y'(t)^{2}}}{y(t)} dt$$

$$\geq \int_{0}^{1} \frac{|y'(t)|}{y(t)} dt$$

$$\geq \int_{0}^{1} \frac{y'(t)}{y(t)} dt$$

$$= \log y(t)|_{0}^{1}$$

$$= \log \frac{b}{a}.$$

Note:

For the first inequality, equality holds when x'(t) = 0. This happens when x(t) is a constant, that is we have a path δ which is a vertical line joining *ia* to *ib*.

For the second inequality, equality holds when |y'(t)| = y'(t). This happens when y'(t) is positive for all *t*. This means the path δ travels 'straight up' the imaginary axis from *ia* to *ib* without doubling back on itself.

Therefore, we have shown that $length_{\mathbb{H}}(\delta) \ge log \frac{b}{a}$ in general. Equality holds when δ is the vertical path joining *ia* to *ib*.

Proposition 12

Let $H \in \mathcal{H}$. $\gamma(H) \in \mathcal{H}$.

Proof.

Recall a vertical line or a circle with a real centre in $\mathbb C$ is given by an equation of the form

$$\alpha z\overline{z} + \beta z + \beta \overline{z} + \gamma = 0$$

for some $\alpha,\beta,\gamma\in\mathbb{R}.$ Let

$$w = \gamma(z) = rac{az+b}{cz+d}$$

Then

$$z=\frac{dw-b}{-cw+a}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then we have

$$\alpha(\frac{dw-b}{-cw+a})(\frac{d\overline{w}-b}{-c\overline{w}+a})+\beta(\frac{dw-b}{-cw+a})+\beta(\frac{d\overline{w}-b}{-c\overline{w}+a})+\gamma=0.$$

Hence

$$\begin{aligned} &\alpha(dw-b)(d\overline{w}-b) + \beta(dw-b)(-c\overline{w}+a) \\ &+\beta(d\overline{w}-b)(-cw+a) + \gamma(-cw+a)(-c\overline{w}+a) = 0. \end{aligned}$$

Expanding this gives

$$(\alpha d^2 - 2\beta cd + \gamma c^2)w\overline{w} + (-\alpha bd + \beta ad + \beta bc - \gamma ac)w + (-\alpha bd + \beta ad + \beta bc - \gamma ac)\overline{w} + (\alpha b^2 - 2\beta ab + \gamma a^2) = 0.$$

This has the form $\alpha' w \overline{w} + \beta' w + \beta' \overline{w} + \gamma'$ with $\alpha', \beta', \gamma' \in \mathbb{R}$, which is the equation of either a vertical line or a circle with real centre.

Let $H \in \mathcal{H}$. Then there exists $\gamma \in M\"ob(\mathbb{H})$ such that γ maps H bijectively to the imaginary axis.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Proof

Case 1: If *H* is the vertical line Re(z) = a then the translation $z \mapsto z - a$ is a *Möbius transformation* of \mathbb{H} that maps *H* to the imaginary axis Re(z) = 0.

Case 2: Let *H* be a semi-circle with end points $\zeta_-, \zeta_+ \in \mathbb{R}, \zeta_- < \zeta_+$. First note that, the imaginary axis is characterised as the unique element of *H* with end-points at 0 and ∞ . Consider the map

$$\gamma(z) = \frac{z - \zeta_+}{z - \zeta_-}.$$

As $-\zeta_{-} + \zeta_{+} > 0$, this is a *Möbius transformation* of \mathbb{H} . Note that $\gamma(H) \in H$. Clearly $\gamma(\zeta_{+}) = 0$ and $\gamma(\zeta_{-}) = \infty$, so $\gamma(H)$ must be the imaginary axis.

Lemma 14

Let $H \in \mathcal{H}$ and let $z_0 \in H$. Then there exists a *Möbius transformation* of \mathbb{H} that maps *H* to the imaginary axis and z_0 to *i*.

Proof

Proceed as in the proof of the previous Lemma, we obtain a *Möbius transformation* $\gamma_1 \in M\"ob(\mathbb{H})$ mapping H to the imaginary axis. Now $\gamma_1(z_0)$ lies on the imaginary axis. For any k > 0, the *Möbius transformation* $\gamma_2(z) = kz$ maps the imaginary axis to itself. For a suitable choice of k > 0 it maps $\gamma_1(z_0)$ to *i*. The composition $\gamma = \gamma_2 \circ \gamma_1$ is the required *Möbius transformation* of \mathbb{H} .

Theorem 15

The geodesics in \mathbb{H} are the semi-circles orthogonal to the real axis and the vertical straight lines. Moreover, given any two points in \mathbb{H} there exists a unique geodesic passing through them.

イロト 不得 とうほう イヨン

ъ

Proof

Let $z, z' \in \mathbb{H}$. Then we can always find a unique element of $H \in \mathcal{H}$ containing z, z'. If z and z' have the same real part then H will be a vertical straight line, otherwise H will be a semi-circle with a real centre. Let δ be any path from z to z'. Apply *Möbius transformation* $\gamma \in M\"ob(\mathbb{H})$ using Lemma 13, $\gamma(z), \gamma(z')$ lie on the imaginary axis. Then $\gamma \circ \delta$ is a path from $\gamma(z)$ to $\gamma(z')$. We have $length_{\mathbb{H}}(\delta) = length_{\mathbb{H}}(\gamma \circ \delta)$ by Proposition 2.

The imaginary axis is the unique geodesic passing through $\gamma(z)$ and $\gamma(z')$ by Proposition 11. Hence $length_{\mathbb{H}}(\gamma \circ \delta)$ achieves its infimum when $\gamma \circ \delta$ is the arc of imaginary axis form $\gamma(z)$ to $\gamma(z')$. Hence $length_{\mathbb{H}}(\delta)$ achieves infimum when $\gamma \circ \delta$ is the imaginary axis from $\gamma(z)$ to $\gamma(z')$. This is when δ is the image under γ^{-1} of the imaginary axis from $\gamma(z)$ to $\gamma(z')$. As $\gamma^{-1} \in M\"ob(\mathbb{H})$, it follows from Proposition 12 that δ is an arc of straight line or semi-circle with real centre passing through z, z'.

We now have a method to calculate the hyperbolic distance between a pair of points in \mathbb{H} in theory. That is, given a pair of points *x* and *y* in \mathbb{H} , find or construct an element γ of $M\ddot{o}b(\mathbb{H})$ so that $\gamma(x) = i\mu$ ad $\gamma(y) = i\lambda$ both lie on the positive imaginary axis. Then determine the values of μ and λ to find the hyperbolic distance

$$d_{\mathbb{H}}(x,y) = d_{\mathbb{H}}(\mu i,\lambda i) = |ln[rac{\lambda}{\mu}]|.$$

Note that here we use the absolute value, as we have made no assumption about whether $\lambda < \mu$ or $\mu < \lambda$.

Example

Consider the two points x = 2 + i and y = -3 + i. The hyperbolic line *l* passing through *x* and *y* lies in the Euclidean circle with Euclidean centre $-\frac{1}{2}$ and Euclidean radius $\frac{\sqrt{29}}{2}$. In particular, the endpoints at infinity of *l* are

Set $\gamma(z) = \frac{z-p}{z-q}$. The determinant γ is p - q > 0, so γ lies in $M\ddot{o}b^+(\mathbb{H})$. Since by construction γ takes the endpoints at infinity of l to the endpoints at infinity of the positive imaginary axis, namely 0 and ∞ , we see that γ takes l to the positive imaginary axis. We see that

$$\gamma(2+i) = \frac{2+i-p}{2+i-q} = \frac{p-q}{(2-q)^2+1}i$$

and

So we have

$$\begin{split} d_{\mathbb{H}}(2+i,-3+i) &= d_{\mathbb{H}}(\gamma(2+i),\gamma(-3+i)) \\ &= ln[\frac{(2-q)^2+1}{(3+q)^2+1}] \\ &= ln[\frac{58+10\sqrt{29}}{58-10\sqrt{29}}] \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

which is approximately 3.294.

We transfer the hyperbolic element of arc-length from \mathbb{H} to \mathbb{D} by making the following observation. For any piecewise differnetiable path $f : [a, b] \to \mathbb{D}$, the composition $n \circ f : [a, b] \to \mathbb{H}$ is a piecewise differentiable path into \mathbb{H} . We know how to calculate the hyperbolic length of $n \circ f$, namely by integrating the hyperbolic element of arc-length $\frac{1}{Im(z)}|dz|$ on \mathbb{H} along $n \circ f$. So, we define the hyperbolic length of f in \mathbb{D} by

$$length_{\mathbb{D}}(f) = length_{\mathbb{H}}(n \circ f).$$

$$n(z) = \frac{\frac{1}{\sqrt{z}} + \frac{1}{\sqrt{z}}}{-\frac{1}{\sqrt{z}} + \frac{1}{\sqrt{z}}}$$

$$= -\frac{1}{\sqrt{z}} + \frac{1}{\sqrt{z}} + \frac{1}{\sqrt{z}}$$

The hyperbolic length of a piecewise differentiable path $f:[a,b]\to \mathbb{D}$ is given by

$$\mathit{length}_{\mathbb{D}}(f) = \int_{f} \frac{2}{1-|z|^2} |dz|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof

We consider the map $h : \mathbb{H} \to \mathbb{D}$ defined by

$$h(z)=\frac{z-i}{iz-1}.$$

Note that h maps \mathbb{H} bijectively to \mathbb{D} , as well as $\partial \mathbb{H}$ to $\partial \mathbb{D}$ bijectively. Let $g(z) = h^{-1}(z)$. Then g maps \mathbb{D} to \mathbb{H} and has the formula

$$g(z) = \frac{-z+i}{-iz+1}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let $\delta : [a, b] \to \mathbb{D}$ be a (parametrisation of a) path in \mathbb{D} . Then $g \circ \delta : [a, b] \to \mathbb{H}$ is a path in \mathbb{H} . The length of $g \circ \delta$ is given by:

$$length_{\mathbb{H}}(g \circ \delta) = \int_{a}^{b} \frac{|(g \circ \delta)'(t)|}{Im(g \circ \delta(t))} dt = \int_{a}^{b} \frac{|g'(\delta(t))||\delta'(t)|}{Im(g \circ \delta(t))} dt$$

by chain rule. We have

$$g'(z) = rac{-2}{(-iz+1)^2}$$

and

$$Im(g(z)) = rac{1-|z|^2}{|-iz+1|^2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hence

$$length_{\mathbb{H}}(g \circ \delta) = \int_{a}^{b} \frac{2}{1 - |\delta(t)|^2} |\delta'(t)| dt.$$

Then

$$length_{\mathbb{D}}(\delta) = \int_a^b \frac{2}{1-|\delta(t)|^2} |\delta'(t)| dt = \int_{\delta} \frac{2}{1-|z|^2} dt$$

・ロト・(部・・モ・・モ・ のへぐ

The distance between two points $z, z' \in \mathbb{D}$ is defined by taking the length of the shortest path between them. We denote $d_{\mathbb{D}}(z, z') = inf\{length_{\mathbb{D}}(\delta) | \delta \text{ is a piecewise continuously} differentiable path from <math>z$ to $z'\}$. As we have used h to transfer the distance function on \mathbb{H} to a distance function on \mathbb{D} , we have

$$d_{\mathbb{D}}(h(z),h(w))=d_{\mathbb{H}}(z,w).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The geodesics in the Poincare disc are the diameters of \mathbb{D} and the arcs of the circles in \mathbb{D} that meet $\partial \mathbb{D}$ at right-angles.

Proof

One can show that *h* is conformal, i.e. *h* preserves angles. Using the characterisation of lines in \mathbb{C} to circles and lines in \mathbb{C} . Recall that *h* maps $\partial \mathbb{H}$ to $\partial \mathbb{D}$. Recall that the geodesics in \mathbb{H} are the arcs of the circles and lines that meet $\partial \mathbb{H}$ orthogonally. As *h* is conformal, the image in \mathbb{D} of a geodesic in \mathbb{H} is a circle or line that meets $\partial \mathbb{D}$ orthogonally.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

In the upper half-plane model \mathbb{H} we often map a geodesic *H* to the imaginary axis and a point z_0 on that geodesic to the point *i*. The following is the analogue of the result in the Poincare disc model.

Let *H* be a geodesic in \mathbb{D} and let $z_0 \in H$. Then there exists a *Möbius transformation* of \mathbb{D} that maps *H* to the real axis and z_0 to 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

References

Hyperbolic geometry, by James W. Anderson, Springer, 1999. (Chapter 3.1-3.5) Lecture notes by C. Walkden (Chapter 3-6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

CLASSIFICATION OF MOBIUS MAP

PREREQUISITE KNOWLEDGE

Topology	Algebra	Complex calculus
MATH3070 One-point compactification, Homeomorphism, Connectedness	MATH2070, MATH3030 Group, Quotient Space, Matrix, Isomorphism	MATH2230, MATH4060 Derivative of Analytic Function Hyperbolic Function

ONE-POINT COMPACTIFICATION

- Let X be a topological space with topology J such that X is locally compact and Hausdorff.
- Then there exists topological space X^{*} = X ∪ {∞} such that X^{*} is <u>compact</u> and open sets in X are also open sets in X^{*}
- X^* is called the one-point compactification of X

CONNECTEDNESS

- Let (X, J) be topological space and $W \subset X$
- W is connected if there are no disjoint, nonempty open set U, V such that $W = U \cup V$

Remark: The connectedness of any set is preserved by homeomorphism (or continuous map)

QUOTIENT SPACE

- Let S be a non-empty set and ~ be an equivalence relation
- [x] = {y ∈ S: x~y} is called the equivalence class of x
- Then the set of all equivalence class in S is the quotient set (space)

MATRIX GROUP

- Let n be positive integer and F be a field
- General Linear Group $GL(n, F) = \{A \in F^{n \times n} : |A| \neq 0\}$
- Special Linear Group $SL(n, F) = \{A \in F^{n \times n} : |A| = 1\}$

GROUP ISOMORPHISM

- Let (G,*) and (H,+) be two groups
- $f: G \rightarrow H$ is a group isomorphism if

•
$$f(a * b) = f(a) + f(b)$$

• f is bijective

CLASSIFICATION: "WHICH SUBSETS OF THE OBJECT SHARE SOME COMMON CHARACTERISTICS?"

Linear Algebra

Classification Vector Space according to dimension Rank-nullity Theorem

Group Theory

Classification of finite simple group

Geometry

Classification of Isometries in Euclidean Plane

Classification of Isometries in Hyperbolic Plane

- $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$
- One-point Compactification of C
- Homeomorphic to Riemann Sphere

MOBIUS GROUP $Mob(\mathbb{C}_{\infty})$

- Mobius Transformation is a map $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ in the form of $f(z) = \frac{az+b}{cz+d}$ with a, b, c, d $\in \mathbb{C}$ ad $-bc \neq 0$
- Basic Properties Mentioned Before
 - The set of all Mobius map forms a group $Mob(\mathbb{C}_{\infty})$ with operation defined as combination of map
 - Angle Preserving
 - Act transitively on ordered triples of distinct complex number
 - Map circle to circle
 - Homeomorphism

MATRIX REPRESENTATION OF $Mob(\mathbb{C}_{\infty})$

- Intuition:
 - The map is determined by 4 coefficient *a*, *b*, *c*, *d*
 - Represent them by 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and the combination of map can become operation on matrix!
 - The operation is actually matrix multiplication ! [Check it as an exercise]
- Question: $Mob(\mathbb{C}_{\infty}) \cong GL(2,\mathbb{C})$?

LIMITATION OF $GL(2, \mathbb{C})$

• Consider
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix}$ in $GL(2, \mathbb{C})$

- Obviously, they are different elements in $GL(2, \mathbb{C})$
- But they represent same Mobius map $\frac{az+b}{cz+d} = \frac{kaz+kb}{kcz+kd}$
- We solve this problem by using $SL(2, \mathbb{C})$ instead
- The ambiguity in matrix representation is reduced to only differ by \pm signs.

Remark: Although the representation in $SL(2, \mathbb{C})$ is not unique, it is concrete enough to tackle with many problems.

$$Mob(\mathbb{C}_{\infty}) \cong PSL(2,\mathbb{C})$$

- To solve the ambiguity in \pm signs, we introduce the relation $\sim: A \sim -A$
- The quotient set of $SL(2, \mathbb{C})$ under ~ is denoted as $PSL(2, \mathbb{C})$
- It is not hard to observe that both groups are isomorphic to each other

BEFORE NEXT SECTION...

- Every map $\frac{az+b}{cz+d} \in Mob(\mathbb{C}_{\infty})$ can be represented by $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ with a'd' b'c' = 1
- The composition of map is just multiplication of matrix
- Some properties of matrix are vitally important for classifying $Mob(\mathbb{C}_{\infty})$

CONJUGATE AND INVARIANT

- Definition:
 - Let $A, B \in Mob(\mathbb{C}_{\infty})$ A is conjugate of B if $\exists S \in Mob(\mathbb{C}_{\infty})$ such that $A = SBS^{-1}$
- Example:

•
$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ -i & -i \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2i & i \\ i & 0 \end{pmatrix}$$

- Equivalence Relation !
 - Exercise: Verify symmetricity, transitivity and reflexive property

FIXED POINT UNDER CONJUGATION

- Theorem I:
- Suppose $A = SBS^{-1}$ and z_0 is a fixed point of B. Then $S(z_0)$ is a fixed point of A.
- Proof:
- $A(S(z_0)) = SBS^{-1}(z_0) = SB(z_0) = S(z_0)$
- By Theorem 1, number of fixed point is invariant under Conjugation.

TRACE IS INVARIANT

- Theorem 2:
- Suppose A, B are conjugate. Then Tr(A) = Tr(B)
- Proof:
- Suppose $A = SBS^{-1}$
- $Tr(A) = Tr(SBS^{-1}) = Tr(SS^{-1}B) = Tr(B)$

TRACE AND NUMBER OF FIXED POINTS

- Theorem 3
- Let $A \in Mob(\mathbb{C}_{\infty})$ with $A \neq id$
- A has one or two fixed points. A has one fixed point if and only if $Tr(A) = \pm 2$
- Proof:
- Consider Quadratic Equation $\frac{az+b}{cz+d} = z \quad \bigcirc cz^2 + (d-a)z b = 0$
- So the number of roots of the equation is determined by $(d a)^2 + 4bc = (d + a)^2 4 = Tr(T)^2 4$
- Hence, A has one fixed point when $Tr(T) = \pm 2$ and having two fixed points otherwise

SUMMARY

- Some maps in $Mob(\mathbb{C}_{\infty})$ are equivalent in terms of conjugate relation
- In that equivalence class, they sharing some common characteristics:
 - Same Trace
 - Same number of fixed points
- Mapping of Fixed Point under Conjugation
- The relation between Trace and Numbers of Fixed Points

CASE I: ONE FIXED POINT z_0

- Through Conjugation $S = \frac{1}{z-z_0}$, we can map the fixed point to ∞
- Suppose $T \in Mob(\mathbb{C}_{\infty})$ with ∞ as only fixed point
- Represent T as $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL(2, \mathbb{C})$ or $PSL(2, \mathbb{C})$
- $T(\infty) = \infty$ implies c = 0
- ad bc = 1 implies $d = \frac{1}{a}$
- $Tr(T) = \pm 2$ implies $a = \pm 1$
- Hence, $T(z) = z \pm b$ [Behave like translation in \mathbb{R}^n]
- We call this type of transformation *Parabolic*

CASE 2: TWO FIXED POINT z^+, z^-

- Through conjugation $S = \frac{z-z^+}{z-z^-}$, we can map the fixed points to $0 \text{ and } \infty$
- Suppose $T \in Mob(\mathbb{C}_{\infty})$ has $0 \text{ and } \infty$ as fixed points
- $T(\infty) = \infty$ implies c = 0
- ad bc = 1 implies $d = \frac{1}{a}$
- T(0) = 0 implies b = 0
- Hence $T(z) = a^2 z$
- Denoted $\lambda = a^2$, we can classify them according nature of λ

HYPERBOLIC

- If $\lambda \in \mathbb{R}$ and $|\lambda| \neq 1$ Then *T* is called *Hyperbolic*
- $T(z) = \lambda z$ behave like scaling in \mathbb{R}^n because $\lambda \in \mathbb{R}$

ELLIPTIC

- If $|\lambda| = 1$ Then we call *T* to be *elliptic*
- Using Poler Form $z = e^{\arg(z)i}$, $T(z) = \lambda z$ is actually rotation of $\arg(\lambda)$ about the origin.

LOXODROMIC

- The remains cases are classified as *loxodromic*
- Write $\lambda = |\lambda| \times e^{\arg(\lambda)i}$, we can observe that *loxodromic* is just composition of *elliptic* transformation $e^{\arg(\lambda)i}z$ and *hyperbolic* transformation $|\lambda|z$

CLASSIFICATION BY TRACE

- If $Tr(T) = \pm 2$ Then we immediately know that T is *parabolic*
- Similar thought applied to other cases !

•
$$T(z) = \lambda z = \begin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & \sqrt{\lambda^{-1}} \end{pmatrix}$$

• The value λ is called *multiplier* of *T*

TRACE OF HYPERBOLIC MAP

• Let $l = \log(\lambda)$

• Then
$$Tr(T) = e^{\frac{l}{2}} + e^{-\frac{l}{2}} = 2 \cosh\left(\frac{l}{2}\right)$$

• *Hyperbolic* $\Leftrightarrow \lambda \in \mathbb{R}, \lambda \neq 1 \Leftrightarrow l = \mathbb{R} + 2n\pi i \Leftrightarrow |Tr(T)| > 2$

TRACE OF ELLIPTIC MAP

• Let $l = \log(\lambda)$

• Then
$$Tr(T) = e^{\frac{l}{2}} + e^{-\frac{l}{2}} = 2 \cosh\left(\frac{l}{2}\right)$$

• Elliptic $\Leftrightarrow |\lambda| = 1, \lambda \neq 1 \Leftrightarrow l = i\theta, \theta = \arg(\lambda) \Leftrightarrow Tr(T) = 2\cos(\theta) \Leftrightarrow Tr(T) \in (-2,2)$

SUMMARY

• Given any $id \neq T \in Mob(\mathbb{C}_{\infty})$, we can classify it according to its trace.

Trace	Туре
$Tr(T) = \pm 2$	Parabolic
$Tr(T) \in \mathbb{R}, Tr(T) > 2$	Hyperbolic
$Tr(T) \in \mathbb{R}, Tr(T) < 2$	Elliptic
$Tr(T) \notin \mathbb{R}$	Loxodromic

FROM \mathbb{C}_{∞} **TO** *D* and *H*

- $Mob(H) = \{T \in Mob(\mathbb{C}_{\infty}) : T(H) \subset H\}$
- $Mob(D) = \{T \in Mob(\mathbb{C}_{\infty}) : T(D) \subset D\}$
- Exercise: Verify that Mob(H) and Mob(D) are subgroups of $Mob(\mathbb{C})$
- The classification of Mob(D), Mob(H) are easy if we know their matrix representation !

Theorem Every element of $M\ddot{o}b(\mathbb{D})$ either has the form

$$p(z) = rac{lpha z + eta}{\overline{eta} z + \overline{lpha}},$$

or has the form,

$$p(z) = rac{lpha \overline{z} + eta}{\overline{eta} \overline{z} + \overline{lpha}},$$

where
$$\alpha, \beta \in \mathbb{C}$$
 and $|\alpha|^2 - |\beta|^2 = 1$.

This result is proved by Team 2. The major application of this theorem is that $\forall T \in Mob(D), Tr(T) = 2Re(\alpha) \in \mathbb{R}$

MAP FROM D TO H

- Theorem 4:
- The map $C: z \to \frac{z-i}{z+i}$ on \mathbb{C}_{∞} satisfy C(H) = D
- Proof:
- $C(\infty) = 1, C(1) = -i, C(0) = -1$
- Hence, C map the circle of infinity ∂H to ∂D
- ∂D and ∂H separate C_{∞} into two connected component
- Hence, C(H) = D or $C(H) = \mathbb{C}_{\infty} \setminus (D \cup \partial D)$
- C(i) = 0 implies C(H) = D
CAYLEY TRANSFORMATION

- Definition :
- $C: H \to D$ defined by $C(z) = \frac{z-i}{z+i}$ is called the Cayley transformation from H to D
- The map is well-defined by Theorem 4

MATRIX REPRESENTATION OF Mob(H)

• Theorem 5:

•
$$\forall F \in Mob(H), F$$
 has the representation $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $a, b, c, d \in R$

• Proof:

• Define
$$h: H \to H$$
 by $h(z) = \frac{z - Re(F(i))}{Im(F(i))}$

• Since
$$Im(h(z)) = \frac{Im(z)}{Im(F(i))}$$
 and $Im(z) > 0$, $Im(F(i)) > 0$

• Hence, *h* is well-defined

THEOREM 5 (CONT.)

• Define
$$g: H \to H$$
 by $g = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$ for some $\theta \in R$

• Suppose
$$z = x + yi \in H$$
, then write $\cos(\theta) = c$, $\sin(\theta) = s$

•
$$g(z) = \frac{cx+s+ysi}{c-xs-ysi} = \frac{1}{|c-xs-ysi|^2}(cx+s+ysi)(c-xs+ys)$$

• So
$$Im(g(z)) = \frac{y}{|c-xs-ysi|^2}(c^2+s^2) > 0$$

- Hence, g is well-defined.
- Define $T = g * h * F \in Mob(H)$

THEOREM 5 (CONT.)

- Direct computation yields, T(i) = i, T'(i) = 1
- Using Theorem 4, $A = CTC^{-1} \in Mob(D)$ and A(0) = 0, A'(0) = 1

• Since
$$A = \frac{az+b}{\overline{b}z+\overline{a}}$$
 implies $A' = \left(\frac{1}{\overline{b}z+\overline{a}}\right)^2 (|a|^2 - |b|^2)$

• As
$$|a|^2 - |b|^2 = 1$$
, $A'(0) = \frac{1}{\bar{a}^2} = 1$. Combine $A(0) = 0$, $A'(0) = 1$

- We have $a = \pm 1$, b = 0
- So A = id
- By the invariant of fixed point, T = id implies $F = h^{-1}g^{-1}$
- So matrix representation of F will be product of matrix of h^{-1} , g^{-1}

SUMMARY

	Mob(H)	Mob(D)
$\binom{a}{c}$	$\begin{pmatrix} b \\ d \end{pmatrix}$, $ad - bc = 1, a, b, c, d \in \mathbb{R}$	$egin{pmatrix} a & b \ \overline{b} & \overline{a} \end{pmatrix}$, $ a ^2 - b ^2 = 1$

Hence, Trace of their representation is real !

Trace	Туре
$Tr(T) = \pm 2$	Parabolic
$Tr(T) \in R, Tr(T) > 2$	Hyperbolic
$Tr(T) \in R, Tr(T) < 2$	Elliptic

MORE ON HYPERBOLIC MAP

Hyperbolic map are conjugate to $\begin{pmatrix} a & 0 \\ 0 & \frac{1}{a} \end{pmatrix}$,

So *xy = c (Hyperbola*) is an invariant curves under *Hyperbolic* map

Also, its fixed points should location on ∂H or ∂D

MORE ON ELLIPTIC MAP

- The conjugation with fixed point at $0 \text{ and } \infty$ is a rotation.
- *Circle* will be an invariant curve.
- Fixed point will be located at interior of H or D

MORE ON PARABOLIC MAP

Exercise: Why this type of maps is called *Parabolic*?

The fixed point located at $\partial H \text{ or } \partial D$

SUMMARY

- Matrix representation of group of Mobius Transformation
- Properties related to Conjugation, Fixed Point, Trace
- Classification of $Mob(c_{\infty})$ according to number of fixed point or trace
- Classification of Mob(H), Mob(D)

CONVEX SET IN H

Convex set in \mathbb{R}^n

Convex set in H

- A set *C* is convex in \mathbb{R}^n if $\forall x, y \in C, l_{xy} \subset C$
- Parametrization: $\forall x, y \in C, t \in [0,1], tx + (1-t)y \in C$

• A set *C* is *convex* in *H* if $\forall x, y \in C$, the hyperbolic line l_{xy} are contained in *C*

Line in \mathbb{R}^n

Line in H

- Theorem I:
- Every Euclidean line is convex

- Theorem I:
- Every Hyperbolic line is convex

Half Space in \mathbb{R}^n

- A line or an affine subspace of ℝⁿ are called *hyperplane*
- Hyperplane can be parametrized as $P = \{ < a, x > = c : x \in \mathbb{R}^n \}$
- The hyperplane divide \mathbb{R}^n into two separate connected component V_1, V_2
- V_1 , V_2 is called open half-space
- $V_i \cup P$ is called closed half-space

Half Space in H

- Every hyperbolic line divide *H* into two connected component *V*₁, *V*₂
- V_1, V_2 is called open half-plane
- $V_i \cup P$ is called closed half-plane

Convex Half Space in \mathbb{R}^n

Convex Half Space in H

- Theorem 2:
- Every half-space is convex

- Theorem 2:
- Every half-plane is convex

Operation on convex set in \mathbb{R}^n

Operation on convex set in H

- In general, intersection of convex set is convex
- While, union of convex set is not convex

- In general, intersection of convex set is convex
- While, union of convex set is not convex

Projection in \mathbb{R}^n

Projection in H

- Theorem 4:
- Let C be closed, convex set in \mathbb{R}^n , $z \in \mathbb{R}^n$.
- Then $\exists ! x \in C, d(x, z) = d(z, C)$

- Theorem 4:
- Let C be closed, convex set in H, $z \in H$.

Bolzano

compact ness.

• Then $\exists ! x \in C, d_H(x, z) = d_H(z, C)$

Idea: $d_H(z,C) = Tuf \left\{ d_H(z_1 x) > x \in C \right\}$ + =) $\exists (x_n) \in C$ s.t. $d_H(z_1 x_n) \rightarrow d_H(z_1 c)$

CHARACTERIZATION OF CONVEX SET

- Theorem 5:
- Let $C \subset H$
- C is convex \Leftrightarrow C is intersection of half-planes

REFERENCE

- Hyperbolic geometry, by James W. Anderson, Springer, 1999.
- Lecture notes by C. Series