MATH4900E Team 4 Presentation

Lau Wang Chi, Elton Kan Ho Lam, Colin

19 October, 2020

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

Table of Contents

- 1. [Arc-length on](#page-2-0) H
- 2. [Geodesics in](#page-39-0) $\mathbb H$ and $\mathbb D$

3. Classification of Möbius transformation

KID KINK VEX KEX NE YORCH

4. [Convex set in upper half plane](#page-75-0)

Table of Contents

1. [Arc-length on](#page-2-0) H

2. [Geodesics in](#page-39-0) H and D

3. Classification of Möbius transformation

K ロ K (日) K 경 K (동) K 경 (동) X (8)

4. [Convex set in upper half plane](#page-75-0)

Path in \mathbb{R}^2

A path in the plane \mathbb{R}^2 is a differentiable function $f:[a,b]\rightarrow\mathbb{R}^2,$ given by $f(t) = (x(t), y(t))$, where $x(t)$ and $y(t)$ are differentiable functions of t and where $[a, b]$ is some interval in \mathbb{R} . The image of an interval $[a,b]$ under a path f is a curve in \mathbb{R}^2 .

The Euclidean length of f is given by the integral

$$
length(f) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt,
$$

KID KINK VEX KEX NE YORCH

where $\sqrt{(x'(t))^2 + (y'(t))^2}dt$ is the element of arc-length in \mathbb{R}^2 .

If we view f as a path into $\mathbb C$ instead of $\mathbb R^2$ and write $f(t) = x(t) + y(t)i$, we can rewrite the integral as

$$
length(f) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{a}^{b} |f'(t)| dt,
$$

and represent the standard element of arc-length in C as

$$
|dz| = |f'(t)|dt.
$$

KO KK@ KK EXK EXK EX YOUR

Path Integral

Let $\rho : \mathbb{C} \to \mathbb{R}$ be a continuous function. For a differentiable path $f : [a, b] \to \mathbb{C}$, we define the length of f with respect to the element of arc-length $\rho(z)|dz|$ to be the path integral

$$
length_{\rho}(f) = \int_{f} \rho(z)|dz| = \int_{a}^{b} \rho(f(t))|f'(t)|dt.
$$

KID KINK VEX KEX NE YORCH

Question: What will happen to the length of a path $f : [a, b] \to \mathbb{C}$ with respect to the element of arc-length $\rho(z)|dz|$ when the domain of f is changed?

i.e. Suppose $h : [\alpha, \beta] \rightarrow [a, b]$ is a surjective differentiable function such that $[a, b] = h([\alpha, \beta])$, and construct a new path by taking the composition $g = f \circ h$. How are length_ρ (f) and length_ρ (g) related?

The length of f with respect to $\rho(z)|dz|$ is the path integral

$$
length_{\rho}(f) = \int_{f} \rho(z)|dz|
$$

=
$$
\int_{a}^{b} \rho(f(t))|f'(t)|dt,
$$

while the length of g with respect to $\rho(z)|dz|$ is the path integral

$$
length_{\rho}(g) = \int_{\alpha}^{\beta} \rho(g(t))|g'(t)|dt
$$

=
$$
\int_{\alpha}^{\beta} \rho((f \circ h)(t))|(f \circ h)'(t)|dt
$$

=
$$
\int_{\alpha}^{\beta} \rho(f(h(t)))|(f'(h(t))||h'(t)|dt.
$$

K □ K K @ K K B K X B K Y B K Y Q Q Q

If $h'(t) \ge 0$ for all t in $[\alpha, \beta]$, then

$$
length_{\rho}(g) = \int_{\alpha}^{\beta} \rho(f(h(t))) |(f'(h(t))||h'(t)| dt
$$

=
$$
\int_{a}^{b} \rho(f(s)) |f'(s)| ds = length_{\rho}(f).
$$

with substitution $s = h(t)$. If $h'(t) \leq 0$ for all t in $[\alpha, \beta]$, then

$$
length_{\rho}(g) = \int_{\alpha}^{\beta} \rho(f(h(t))) |(f'(h(t))||h'(t)| dt
$$

=
$$
- \int_{a}^{b} \rho(f(s)) |f'(s)| ds = length_{\rho}(f).
$$

K □ K K @ K K B K X B K Y B K Y Q Q Q

with substitution $s = h(t)$.

So if either $h'(t) \geq 0$ or $h'(t) \leq 0$ for all t in $[\alpha, \beta],$ we have

$$
length_{\rho}(f) = length_{\rho}(f \circ h),
$$

where $f : [a, b] \to \mathbb{C}$ is a piecewise differentiable path and $h : [\alpha, \beta] \rightarrow [a, b]$ is differentiable. In this case, we refer to $f \circ h$ as a reparametriaztion of f.

A O A G A 4 O A C A G A 4 O A 4 O A C A

Proposition 1

Let $f : [a, b] \to \mathbb{C}$ be a piecewise differentiable path, let $[\alpha, \beta]$ be another interval, and let $h : [\alpha, \beta] \rightarrow [a, b]$ be a surjective differentiable function. Let $\rho(z)|dz|$ be an element of arc-length on \mathbb{C} . Then

 $length_o(f \circ h) \ge length_o(f)$.

A O A G A 4 O A C A G A 4 O A 4 O A C A

Let $\rho(z)|dz|$ be an element of arc-length on H that is a conformal distortion of the standard element of arc-length, so that the length of a piecewise differentiable path $f : [a, b] \rightarrow \mathbb{H}$ is given by the integral

$$
length_{\rho}(f) = \int_{f} \rho(z)|dz| = \int_{a}^{b} \rho(f(t))|f'(t)|dt.
$$

By the phrase length is invariant under the action of $M\ddot{o}b(\mathbb{H})$, for every piecewise differentiable path $f : [a, b] \rightarrow \mathbb{H}$ and every element γ of *M* $ob(\mathbb{H})$, we have

$$
length_{\rho}(f) = length_{\rho}(\gamma \circ f).
$$

Proposition 2

Let γ be a *Möbius* transformation of $\mathbb H$. Let $z,z'\in\mathbb H$ and let δ be a path from z to z' . Then $\text{length}_{\mathbb{H}}(\gamma \circ \delta) = \text{length}_{\mathbb{H}}(\delta).$

Proof

Let $\gamma(z)=\frac{az+b}{cz+d}$ where $a,\,b,\,c,\,d\in\mathbb{R}$ and $ad-bc>0.$ It is an easy calculation to check that for any $z \in \mathbb{H}$,

$$
|\gamma'(z)| = \frac{ad - bc}{|cz + d|^2}
$$

and

$$
Im(\gamma(z)) = \frac{ad - bc}{|cz + d|^2} Im(z).
$$

Let $\delta : [0, 1] \rightarrow \mathbb{H}$ be a parametrization of δ . Then by chain rule,

$$
length_{\mathbb{H}}(\gamma \circ \delta) = \int_0^1 \frac{|(\gamma \circ \delta)'(t)|}{Im(\gamma \circ \delta)(t)} dt
$$

=
$$
\int_0^1 \frac{|\gamma'(\delta(t))||\delta'(t)|}{Im(\gamma \circ \delta)(t)} dt
$$

=
$$
\int_0^1 \frac{ad - bc}{|c\delta(t) + d|^2} |\delta'(t)| \frac{|c\delta(t) + d|^2}{ad - bc} \frac{1}{Im(\delta(t))} dt
$$

=
$$
\int_0^1 \frac{|\delta'(t)|}{Im(\delta(t))} dt
$$

=
$$
length_{\mathbb{H}}(\delta).
$$

KO KK@ KK 4 B KK 3 4 D K V 4 O K V

Since

$$
length_{\rho}(\gamma \circ f) = \int_{a}^{b} \rho((\gamma \circ f)(t)) |(\gamma \circ f)'(t))| dt
$$

=
$$
\int_{a}^{b} \rho((\gamma \circ f)(t)) |\gamma'(f(t))| |f'(t)| dt
$$

and

$$
length_{\rho}(f) = \int_{a}^{b} \rho(f(t)) |f'(t)| dt,
$$

we have

$$
\int_a^b \rho(f(t))|f'(t)|dt = \int_a^b \rho((\gamma \circ f)(t))|\gamma'(f(t))||f'(t)|dt
$$

KO KK@ KK EXK EXK EX YOUR

for every piecewise differentiable path $f : [a, b] \rightarrow \mathbb{H}$ and every element γ of $M\ddot{o}b^+(\mathbb{H})$.

Equivalently, this can be written as

$$
\int_a^b (\rho(f(t)) - \rho((\gamma \circ f)(t))|\gamma'(f(t))|)|f'(t)|dt = 0
$$

for every piecewise differentiable path $f : [a, b] \rightarrow \mathbb{H}$ and every element γ of $M\ddot{o}b^+(\mathbb{H})$. For an element γ of $M\ddot{o}b^+(\mathbb{H})$, set

$$
\mu_\gamma(z)=\rho(z)-\rho(\gamma(z))|\gamma'(z)|,
$$

so that the condition on $\rho(z)$ becomes a condition on $\mu_{\gamma}(z)$, that is

$$
\int_f \mu_\gamma(z)|dz| = \int_a^b \mu_\gamma(f(t))|f'(t)|dt = 0
$$

for every piecewise differentiable path $f : [a, b] \rightarrow \mathbb{H}$ and every element γ of $M\ddot{o}b^+(\mathbb{H})$.

Lemma 3

Let D of an open set of \mathbb{C} , let $\mu : D \to \mathbb{R}$ be a continuous function, and suppose that $\int_f \mu(z)|dz| = 0$ for every piecewise differentiable path $f : [a, b] \rightarrow D$. Then $\mu \equiv 0$.

Proof

We do by contradiction.

Suppose there exists a point $z \in D$ at which $\mu(z) \neq 0$. Replacing μ by $-\mu$ if necessary, we may assume that $\mu(z) > 0$.

Since μ is continuous, for each $\varepsilon > 0$, there exists $\delta > 0$ such that $U_{\delta}(z) \subset D$ and $w \in U_{\delta}(z)$ implies that $\mu(w) \in U_{\epsilon}(\mu(z))$, where

$$
U_\delta(z)=u\in\mathbb{C}:|u-z|<\delta
$$

and

$$
U_{\varepsilon}(t)=s\in\mathbb{R}:|s-t|<\varepsilon.
$$

Taking $\varepsilon = \frac{1}{3}$ $\frac{1}{3}|\mu(z)|$, we see that there exists $\delta > 0$ so that $w \in U_{\delta}(z)$ implies that $\mu(w) \in U_{\varepsilon}(\mu(z))$. Using the triangle inequality and the fact that $\mu(z) > 0$, this implies that $\mu(w) > 0$ for all $w \in U_{\delta}(z)$. We now choose a specific non-constant piecewise differentiable path, namely the path $f : [0, 1] \rightarrow U_{\delta}(z)$ given by

$$
f(t) = z + \frac{1}{3}\delta t.
$$

Observe that $\mu(f(t)) > 0$ for all t in [0, 1], since $f(t) \in U_{\delta}(z)$ for all t in [0,1]. In particular, we have that $\int_f \mu(z)|dz|>$ 0, which gives the desired contradiction.

Hence by the lemma, we have

$$
\mu_\gamma(z)=\rho(z)-\rho(\gamma(z))|\gamma'(z)|=0
$$

for every $z \in \mathbb{H}$ and every element γ of $M\ddot{\circ}b^+(\mathbb{H})$. We now consider how μ_{γ} behaves under composition of elements of $M\ddot{o}b^+(\mathbb{H}).$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

Let γ and φ be two elements in $M\ddot{o}b^+(\mathbb{H})$.

$$
\mu_{\gamma \circ \varphi}(z) = \rho(z) - \rho((\gamma \circ \varphi)(z)) |(\gamma \circ \varphi)'(z)|
$$

= $\rho(z) - \rho((\gamma \circ \varphi)(z)) |\gamma'(\varphi(z))| |\varphi'(z)|$
= $\rho(z) - \rho(\varphi(z)) |\varphi'(z)| + \rho(\varphi(z)) |\varphi'(z)|$
- $|\rho((\gamma \circ \varphi)(z)) |\gamma'(\varphi(z))| |\varphi'(z)|$
= $\mu_{\varphi}(z) + \mu_{\gamma}(\varphi(z)) |\varphi'(z)|.$

In particular, if $\mu_{\gamma} \equiv 0$ for every γ in a generating set for $M\ddot{\mathrm{o}}b^+(\mathbb{H})$, then $\mu_{\gamma} \equiv 0$ for every element γ of $M\ddot{\sigma}b^{+}(\mathbb{H})$.

K □ K K @ K K B K X B K Y B K Y Q Q Q

 $M\ddot{\circ}b(\mathbb{H})$ is generated by elements of the form $m(z) = az + b$ for $a > 0$ and $b \in \mathbb{R}$, $K(z) = \frac{-1}{z}$, and $B(z) = -\overline{z}$.

Note that the elements listed as generators are all elements of $M\ddot{\circ}b(\mathbb{H})$. Also note that every element of $M\ddot{\circ}b(\mathbb{H})$ has either the form

$$
m(z) = \frac{az+b}{cz+d}
$$

where a, b, c, $d \in \mathbb{R}$ and $ad - bc = 1$, or the form

$$
n(z)=\frac{a\overline{z}+b}{c\overline{z}+d},
$$

KORKAR KERKER DRAM

where a, b, c, d is purely imaginary and $ad - bc = 1$.

If $c = 0$, then $m(z) = \frac{a}{d}z + \frac{b}{d}$ $\frac{b}{d}$. Since $ad - bc = ad = 1$, we have $\frac{a}{d} = a^2 > 0.$ If $c \neq 0$, then $m(z) = f(K(g(z))),$ where $g(z) = c^2 z + cd$ and $f(z) = z + \frac{a}{c}$ $\frac{a}{c}$. Note that $B \circ n = m$, where *m* is an element of $M\ddot{o}b(\mathbb{H})$, we can write $n = B^{-1} \circ m = B \circ m$.

KORKARYKERKE POLO

Then we consider a generator $\gamma(z) = z + b$ for $b \in \mathbb{R}$ first. Since $\gamma'(z)=1$ for every $z\in\mathbb{H}$, the condition imposed on $\rho(z)$ is that

$$
0\equiv \mu_\gamma(z)=\rho(z)-\rho(\gamma(z))|\gamma'(z)|=\rho(z)-\rho(z+b)
$$

for every $z \in \mathbb{H}$ and every $b \in \mathbb{R}$. That is

$$
\rho(z) = \rho(z + b)
$$

for every $z \in \mathbb{H}$ and every $b \in \mathbb{R}$. In particular, $\rho(z)$ depends only on the imaginary part $y = Im(z)$ of $z = x + iy$.

To see this explicitly, suppose that $z_1 = x_1 + iy$ and $z_2 = x_2 + iy$ have the same imaginary part, and write $z_2 = z_1 + (x_2 - x_1)$. Since $x_2 - x_1$ is real, we have $\rho(z_2) = \rho(z_1)$. Hence we may view ρ as a real-valued function of the single real variable $y = Im(z)$. Explicitly, consider the real-valued function $r:(0,\infty) \to (0,\infty)$ given by $r(\gamma) = \rho(i\gamma)$, and note that $\rho(z) = r(Im(z))$ for every $z \in \mathbb{H}$.

Next we consider the generator $\gamma(z)=$ az for $a>0.$ Since $\gamma'(z)=a$ for every $z \in \mathbb{H}$, the condition imposed on $\rho(z)$ is that

$$
0 \equiv \mu_{\gamma}(z) = \rho(z) - \rho(\gamma(z))|\gamma'(z)| = \rho(z) - a\rho(az)
$$

for every $z \in \mathbb{H}$ and every $a > 0$. That is,

$$
\rho(z)=a\rho(az)
$$

for every $z \in \mathbb{H}$ and every $a > 0$. In particular, we have

$$
r(y) = ar(ay)
$$

for every $y > 0$ and every $a > 0$. Interchanging the roles of a and y, we see that $r(a) = \gamma r(a\gamma)$. Dividing through by y, we obtain

$$
r(ay) = \frac{1}{y}r(a).
$$

Taking $a = 1$, this yields that

$$
r(y) = \frac{1}{y}r(1),
$$

and r is completely determined by its value at 1. Recalling the definition of r , we have the invariance of length under $M\ddot{\circ}b^+(\mathbb{H})$ implies that $\rho(z)$ has the form

$$
\rho(z) = r(Im(z)) = \frac{c}{Im(z)},
$$

where c is an arbitrary positive constant.

We now take the transformations $K(z) = -\frac{1}{z}$ $\frac{1}{z}$ and $B(z) = -\overline{z}$ into our consideration.

Since $K'(z) = \frac{1}{z^2}$, the condition imposed on $\rho(z)$ is that

$$
0 = \mu_K(z) = \rho(z) - \rho(K(z))|K'(z)| = \rho(z) - \rho(-\frac{1}{z})\frac{1}{|z|^2}.
$$

Substituting $\rho(z) = \frac{c}{Im(z)}$ and using

$$
\rho(-\frac{1}{z}) = \rho(\frac{-\overline{z}}{|z|^2}) = \frac{c|z|^2}{Im(-\overline{z})} = \frac{c|z|^2}{Im(z)},
$$

we obtain

$$
\rho(z)-\rho(-\frac{1}{z})\frac{1}{|z|^2}=\frac{c}{Im(z)}-\frac{c|z|^2}{Im(z)}\frac{1}{|z|^2}=\frac{c}{Im(z)}-\frac{c}{Im(z)}=0.
$$

Note that $B'(z)$ is not defined. So we cannot check by doing similar calculations like in $K(z)$. Instead we want to show

 $length(B \circ f) = length(f).$

Note that $B \circ f(t) = -x(t) + iy(t)$. Then $|(B \circ f)'(t)| = |f'(t)|$ and $Im(B \circ f)(t) = \gamma(t) = Im(f(t))$, and so

$$
length(B \circ f) = \int_{a}^{b} \frac{c}{Im((B \circ f)(t))} |(B \circ f)'(t)| dt
$$

=
$$
\int_{a}^{b} \frac{c}{Im(f(t))} |f'(t)| dt = length(f).
$$

Therefore we have the following theorem:

Theorem 4

For every positive constant c , the element of arc-length

$$
\frac{c}{Im(z)}|dz|
$$

on $\mathbb H$ is invariant under the action of $M\ddot{\sigma}b(\mathbb H)$. That is, for every piecewise differentiable path $f : [a, b] \rightarrow \mathbb{H}$ and every element γ of $M\ddot{o}b(\mathbb{H})$, we have that

$$
length_{\rho}(f) = length_{\rho}(\gamma \circ f).
$$

However, nothing we have done to this point has given us a way of determining a specific value of c . In fact, it is not possible to specify the value of c using solely the action of $M\ddot{\circ}b(\mathbb{H})$. To avoid carrying c through all our calculations, we set $c = 1$.

A O A G A 4 O A C A G A 4 O A 4 O A C A

Example

For a real number $\lambda > 0$, let A_{λ} be the Euclidean line segment joining $-1 + iλ$ to $1 + iλ$, and let $B_λ$ be the hyperbolic line segment joining $-1 + iλ$ to $1 + iλ$. Cauculate the lengths of $A_λ$ and $B_λ$ with respect to the element of arc-length $\frac{c}{Im(z)}|dz|$.

Solution.

We parametrize A_{λ} by the path $f : [-1, 1] \rightarrow \mathbb{H}$ given by $f(t) = t + i\lambda$. Since $Im(f(t)) = \lambda$ and $|f'(t)| = 1$, we see that

$$
length(f) = \int_{-1}^{1} \frac{c}{\lambda} dt = \frac{2c}{\lambda}.
$$

 B_{λ} lies on the Euclidean circle with Euclidean centre 0 and Euclidean B_{λ} hes on the Euclidean circle with Euclidean centre 0 and Euclidean and $1 + i\lambda$
radius $\sqrt{1 + \lambda^2}$. The Euclidean line segment between 0 and $1 + i\lambda$ makes angle θ with the positive real axis, where $cos(\theta) = \frac{-1}{\sqrt{1+\theta}}$ $\frac{1}{1+\lambda^2}$. So we can parametrize B_λ by the path $g : [\theta, \pi - \theta] \to \mathbb{H}$ given by we can parametrize B_{λ} by the path $g : [b, \pi - b] \to \pi$ gift $g(t) = \sqrt{1 + \lambda^2} e^{i\theta}$. Since $Im(g(t)) = \sqrt{1 + \lambda^2} sin(\theta)$ and $|g'(t)| =$ √ $1 + \lambda^2$, we see that

$$
length(g) = \int_{\theta}^{\pi-\theta} c \csc(t) dt = c \ln[\frac{\sqrt{1+\lambda^2}+1}{\sqrt{1+\lambda^2}-1}].
$$

KORKAR KERKER E VOOR

イロト (個) (差) (差) (差) の Q Q

For a piecewise differentiable path $f : [a, b] \rightarrow \mathbb{H}$, we define the hyperbolic length of f to be

$$
length_{\mathbb{H}}(f) = \int_{f} \frac{1}{Im(z)}|dz| = \int_{a}^{b} \frac{1}{Im(f(t))} |f'(t)|dt.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

Example

Take $0 < a < b$ and consider the path $f : [a, b] \rightarrow \mathbb{H}$ given by $f(t) = it$. The image $f([a, b])$ of [a, b] under f is the segment of the positive imaginary axis between *ai* and *bi*. Since $Im(f(t)) = t$ and $|f'(t)| = 1$, we see that

$$
length_{\mathbb{H}}(f) = \int_{f} \frac{1}{Im(z)} |dz| = \int_{a}^{b} \frac{1}{t} dt = ln[\frac{b}{a}].
$$

A O A G A 4 O A C A G A 4 O A 4 O A C A
Proposition 6

Let $f : [a, b] \rightarrow \mathbb{H}$ be a piecewise differentiable path. Then the hyperbolic length *length* $\text{H}(f)$ of f is finite. Note: this provides a way to estimate an upper bound for the hyperbolic length of a path in H.

KID KINK VEX KEX NE YORCH

Proof

There exists a constant $B > 0$ so that the image $f([a, b])$ of [a, b] under f is contained in the subset

$$
K_B = \{ z \in \mathbb{H} | Im(z) \geq B \}
$$

of H. Given that $f([a, b])$ is contained in K_B , we can estimate the integral giving the hyperbolic length of f . We first note that by the definition of piecewise differentiable, there is a partition P of [a, b] inito subintervals

$$
P = [a = a_0, a_1], [a_1, a_2], ..., [a_n, a_{n+1} = b]
$$

so that f is differentiable on each subinterval $[a_k, a_{k+1}]$.

In particular, its derivativ f' is continuous on each subinterval. By the extreme value theorem for a continuous function on a closed interval, there then exists for each k a number A_k so that

$$
|f'(t)| \leq A_k \,\forall t \in [a_k, a_{k+1}].
$$

Let A be the maximum of $A_0, ..., A_n$. Then we have

$$
length_H(f) = \int_a^b \frac{1}{Im(f(t))} |f'(t)| dt \le \int_a^b \frac{1}{B} A dt = \frac{A}{B}(b-a),
$$

which is finite.

Table of Contents

1. [Arc-length on](#page-2-0) H

2. [Geodesics in](#page-39-0) $\mathbb H$ and $\mathbb D$

3. Classification of Möbius transformation

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

4. [Convex set in upper half plane](#page-75-0)

Definition 7

A *metric* on a set X is a function

$$
d:X\times X\to\mathbb{R}
$$

satisfying three conditions:

1. $d(x, y) \ge 0$ for all $x, y \in X$, and $d(x, y) = 0$ if and only if $x = y$; 2. $d(x, y) = d(y, x)$; and 3. $d(x, z) \leq d(x, y) + d(y, z)$ (the triangle inequality).

KORKARYKERKE POLO

Definition 8

Let X be a metric space with metric d. We say that (X, d) is a path metric space if for each pair of points x and γ of X we have

$$
d(x, y) = inf\{length(f) : f \in \Gamma[x, y]\},\
$$

and for each pair of points x and γ of X, there exists a distance realizing path in $\Gamma[x, y]$, which is a path f in $\Gamma[x, y]$ satisfying

$$
d(x, y) = length(f).
$$

KID KINK VEX KEX NE YORCH

Example

 (\mathbb{C}, n) is a path metric space while $(\mathbb{C} - \{0\}, n)$ is not, where $n(x, y) = |x - y|$ on \mathbb{C} and $\mathbb{C} - \{0\} = X$ respectively.

Consider two points 1 and -1 in (X, n) . The Euclidean line segment joining 1 to -1 passes through 0, and so is not a path in X . Every other path joining 1 to -1 has length strictly greater than

Theorem 9

 (H, d_H) is a path metric space. Moreover, the distance realizing path in $\Gamma[x, y]$ is a parametrization of the hyperbolic line segment joining x to y . (Proof: Omitted.)

KID KINK VEX KEX NE YORCH

Proposition 10

For every element γ of $M\ddot{o}b(\mathbb{H})$ and for every pair x and y of points of H, we have

$$
d_{\mathbb{H}}(x,y)=d_{\mathbb{H}}(\gamma(x),\gamma(y)).
$$

Note: We call γ is an isometry of H.

Proof.

Observe that $\gamma \circ f : f \in \Gamma[x, y] \subset \Gamma[\gamma(x), \gamma(y)]$. To see this, take a path $f : [a, b] \to \mathbb{H}$ in $\Gamma[x, y]$, so that $f(a) = x$ and $f(b) = y$. Since $\gamma \circ f(a) = \gamma(x)$ and $\gamma \circ f(b) = \gamma(y)$, we have $\gamma \circ f$ lies in $\Gamma[\gamma(x), \gamma(y)].$

KORKARYKERKE POLO

Since length $\mathbb{H}(f)$ is invariant under the action of $M\ddot{o}b(\mathbb{H})$, we have

$$
length_{\mathbb{H}}(\gamma \circ f) = length_{\mathbb{H}}(f)
$$

for every path f in $\Gamma[x, y]$, and

$$
d_{\mathbb{H}}(\gamma(x), \gamma(y)) = \inf \{ \operatorname{length}_{\mathbb{H}}(g) : g \in \Gamma[\gamma(x), \gamma(y)] \} \\ \leq \inf \{ \operatorname{length}_{\mathbb{H}}(\gamma \circ f) : f \in \Gamma[x, y] \} \\ \leq \inf \{ \operatorname{length}_{\mathbb{H}}(f) : f \in \Gamma[x, y] \} = d_{\mathbb{H}}(x, y).
$$

KO KK@ KK EXK EXK EX YOUR

Since γ in invertible and γ^{-1} is an element of $\textit{M\"ob}(\mathbb H)$, we may repeat the argument to see that

$$
\{\gamma^{-1} \circ g | g \in \Gamma[\gamma(x), \gamma(y)]\} \subset \Gamma[x, y],
$$

and hence

$$
d_{\mathbb{H}}(x, y) = \inf \{ \operatorname{length}_{\mathbb{H}}(f) : f \in \Gamma[x, y] \} \\ \leq \inf \{ \operatorname{length}_{\mathbb{H}}(\gamma^{-1} \circ g) : g \in \Gamma[\gamma(x), \gamma(y)] \} \\ \leq \inf \{ \operatorname{length}_{\mathbb{H}}(g) : g \in \Gamma[\gamma(x), \gamma(y)] \} = d_{\mathbb{H}}(\gamma(x), \gamma(y)).
$$

Therefore we have $d_{\mathbb{H}}(x, y) = d_{\mathbb{H}}(\gamma(x), \gamma(y))$ and this completes the proof.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

We now proceed to calculate the geodesics in $\mathbb H$. Geodesics is the paths of shortest distance in H. In this section we will show that the imaginary axis is a geodesic. Then we will claim that any vertical straight line and any circle meeting the real axis orthogonally is also a geodesic. In here we denote H the set of semi-circles orthogonal to $\mathbb R$ and the vertical lines in the upper half-plane $\mathbb H$.

KID KA KERKER E 1990

Proposition 11

Let $a < b$. Then the hyperbolic distance between *ia* and *ib* is $\log\frac{b}{a}$. Moreover, the vertical line joining ia to ib is the unique path between *ia* and *ib* ith length $\log \frac{b}{a}$; any other path from *ia* to *ib* has length strictly greater than $\log \frac{b}{a}$.

 $\left\{\begin{array}{c}a\\b\\c\end{array}\right\}$

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶

Proof

Let $\delta(t) = it$, $a \le t \le b$. Then δ is a path from *ia* to *ib*. Clearly $|\delta'(t)| = 1$ and $Im(\delta(t)) = t$ so that

$$
length_{\mathbb{H}}(\delta) = \int_{a}^{b} \frac{1}{t} dt = log \frac{b}{a}.
$$

Now let $\delta(t) = x(t) + iy(t) : [0, 1] \rightarrow \mathbb{H}$ be any path from *ia* to *ib*. Then

$$
length_{\mathbb{H}}(\delta) = \int_0^1 \frac{\sqrt{x'(t)^2 + y'(t)^2}}{y(t)} dt
$$

\n
$$
\geq \int_0^1 \frac{|y'(t)|}{y(t)} dt
$$

\n
$$
\geq \int_0^1 \frac{y'(t)}{y(t)} dt
$$

\n
$$
= log y(t)|_0^1
$$

\n
$$
= log \frac{b}{a}.
$$

Note:

For the first inequality, equality holds when $x'(t) = 0$. This happens when $x(t)$ is a constant, that is we have a path δ which is a vertical line joining ia to ib.

For the second inequality, equality holds when $|y'(t)| = y'(t)$. This happens when $y'(t)$ is positive for all $t.$ This means the path δ travels 'straight up' the imaginary axis from ia to ib without doubling back on itself.

KORK E KERKERKERKER

Therefore, we have shown that $\mathit{length}_{\mathbb{H}}(\delta) \geq \log\frac{b}{a}$ in general. Equality holds when δ is the vertical path joining *ia* to *ib*.

Proposition 12

Let $H \in \mathcal{H}$. $\gamma(H) \in \mathcal{H}$.

Proof.

Recall a vertical line or a circle with a real centre in $\mathbb C$ is given by an equation of the form

$$
\alpha z\overline{z} + \beta z + \beta \overline{z} + \gamma = 0
$$

for some $\alpha, \beta, \gamma \in \mathbb{R}$. Let

$$
w=\gamma(z)=\frac{az+b}{cz+d}.
$$

Then

$$
z=\frac{dw-b}{-cw+a}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Then we have

$$
\alpha(\frac{dw-b}{-cw+a})(\frac{d\overline{w}-b}{-c\overline{w}+a})+\beta(\frac{dw-b}{-cw+a})+\beta(\frac{d\overline{w}-b}{-c\overline{w}+a})+\gamma=0.
$$

Hence

$$
\alpha(dw - b)(d\overline{w} - b) + \beta(dw - b)(-c\overline{w} + a)
$$

+
$$
\beta(d\overline{w} - b)(-cw + a) + \gamma(-cw + a)(-c\overline{w} + a) = 0.
$$

Expanding this gives

$$
(\alpha d^2 - 2\beta cd + \gamma c^2)w\overline{w} + (-\alpha bd + \beta ad + \beta bc - \gamma ac)w
$$

+
$$
(-\alpha bd + \beta ad + \beta bc - \gamma ac)\overline{w} + (\alpha b^2 - 2\beta ab + \gamma a^2) = 0.
$$

This has the form $\alpha'w\overline{w}+\beta'w+\beta'\overline{w}+\gamma'$ with $\alpha',\beta',\gamma'\in\mathbb{R}$, which is the equation of either a vertical line or a circle with real centre.

Lemma 13

Let $H \in \mathcal{H}$. Then there exists $\gamma \in M \ddot{o} b(\mathbb{H})$ such that γ maps H bijectively to the imaginary axis.

KID KINK VEX KEX NE YORCH

Proof

Case 1: If H is the vertical line $Re(z) = a$ then the translation $z \mapsto z - a$ is a Möbius transformation of H that maps H to the imaginary axis $Re(z) = 0$.

Case 2: Let H be a semi-circle with end points ζ , ζ + $\in \mathbb{R}$, ζ - ζ +. First note that, the imaginary axis is characterised as the unique element of H with end-points at 0 and ∞ . Consider the map

$$
\gamma(z) = \frac{z - \zeta_+}{z - \zeta_-}.
$$

As $-\zeta_- + \zeta_+ > 0$, this is a *M*öbius transformation of H. Note that $\gamma(H) \in H$. Clearly $\gamma(\zeta_+) = 0$ and $\gamma(\zeta_-) = \infty$, so $\gamma(H)$ must be the imaginary axis.

Lemma 14

Let $H \in \mathcal{H}$ and let $z_0 \in H$. Then there exists a Möbius transformation of H that maps H to the imaginary axis and z_0 to i.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | ⊙ Q Q*

Proof

Proceed as in the proof of the previous Lemma, we obtain a *M* $\ddot{\text{o}}$ bius transformation $\gamma_1 \in M \ddot{\text{o}} b(\mathbb{H})$ mapping H to the imaginary axis. Now $\gamma_1(z_0)$ lies on the imaginary axis. For any $k > 0$, the Möbius transformation $\gamma_2(z) = kz$ maps the imaginary axis to itself. For a suitable choice of $k > 0$ it maps $\gamma_1(z_0)$ to *i*. The composition $\gamma = \gamma_2 \circ \gamma_1$ is the required Möbius transformation of H.

Theorem 15

The geodesics in $\mathbb H$ are the semi-circles orthogonal to the real axis and the vertical straight lines. Moreover, given any two points in $\mathbb H$ there exists a unique geodesic passing through them.

イロトイ団 トイミトイミト

 \Rightarrow

 2990

Proof

Let $z, z' \in \mathbb{H}$. Then we can always find a unique element of $H \in \mathcal{H}$ containing z, z' . If z and z' have the same real part then H will be a vertical straight line, otherwise H will be a semi-circle with a real centre. Let δ be any path from z to z' . Apply *M*öbius transformation $\gamma \in M\ddot{o}b(\mathbb{H})$ using Lemma 13, $\gamma(z),\gamma(z')$ lie on the imaginary axis. Then $\gamma\circ\delta$ is a path from $\gamma(z)$ to $\gamma(z')$. We have $\mathit{length}_{\mathbb{H}}(\delta) = \mathit{length}_{\mathbb{H}}(\gamma \circ \delta)$ by Proposition 2.

A O A G A 4 D A D A D A G A G A 4 O A CA

The imaginary axis is the unique geodesic passing through $\gamma(z)$ and $\gamma(z')$ by Proposition 11. Hence $\mathit{length}_{\mathbb{H}}(\gamma\circ\delta)$ achieves its infimum when $\gamma \circ \delta$ is the arc of imaginary axis form $\gamma(z)$ to $\gamma(z').$ Hence length $\mathbb{H}(\delta)$ achieves infimum when $\gamma \circ \delta$ is the imaginary axis from $\gamma(z)$ to $\gamma(z').$ This is when δ is the image under γ^{-1} of the imaginary axis from $\gamma(z)$ to $\gamma(z').$ As $\gamma^{-1}\in\mathit{M\"ob}(\mathbb H),$ it follows from Proposition 12 that δ is an arc of straight line or semi-circle with real centre passing through z, z' .

We now have a method to calculate the hyperbolic distance between a pair of points in $\mathbb H$ in theory. That is, given a pair of points x and y in H, find or construct an element γ of $M\ddot{o}b(\mathbb{H})$ so that $\gamma(x) = i\mu$ ad $\gamma(y) = i\lambda$ both lie on the positive imaginary axis. Then determine the values of μ and λ to find the hyperbolic distance

$$
d_{\mathbb{H}}(x,y)=d_{\mathbb{H}}(\mu i,\lambda i)=|ln[\frac{\lambda}{\mu}]|.
$$

Note that here we use the absolute value, as we have made no assumption about whether $\lambda < \mu$ or $\mu < \lambda$.

Example

Consider the two points $x = 2 + i$ and $y = -3 + i$. The hyperbolic line l passing through x and y lies in the Euclidean circle with Euclidean centre $-\frac{1}{2}$ $\frac{1}{2}$ and Euclidean radius $rac{1}{\sqrt{29}}$ $\frac{29}{2}$. In particular, the endpoints at infinity of l are

Set $\gamma(z)=\frac{z-p}{z-q}.$ The determinant γ is $p-q>0,$ so γ lies in $M\ddot{\circ}b^+(\mathbb{H})$. Since by construction γ takes the endpoints at infinity of l to the endpoints at infinity of the positive imaginary axis, namely 0 and ∞ , we see that γ takes l to the positive imaginary axis. We see that

$$
\gamma(2+i) = \frac{2+i-p}{2+i-q} = \frac{p-q}{(2-q)^2+1}i
$$

and

So we have

$$
d_{\mathbb{H}}(2+i, -3+i) = d_{\mathbb{H}}(\gamma(2+i), \gamma(-3+i))
$$

= $ln\left[\frac{(2-q)^2+1}{(3+q)^2+1}\right]$
= $ln\left[\frac{58+10\sqrt{29}}{58-10\sqrt{29}}\right]$

KID KINK VEX KEX NE YORCH

which is approximately 3.294.

We transfer the hyperbolic element of arc-length from $\mathbb H$ to $\mathbb D$ by making the following observation. For any piecewise differnetiable path $f : [a, b] \to \mathbb{D}$, the composition $n \circ f : [a, b] \to \mathbb{H}$ is a piecewise differentiable path into $\mathbb H$. We know how to calculate the hyperbolic length of $n \circ f$, namely by integrating the hyperbolic element of arc-length $\frac{1}{\textit{Im}(z)}|dz|$ on $\mathbb H$ along $n \circ f.$ So, we define the hyperbolic length of f in $\mathbb D$ by

$$
length_{\mathbb{D}}(f) = length_{\mathbb{H}}(n \circ f).
$$
\n
$$
\gamma(z) = \frac{z}{\sqrt{z}} \cdot \frac{z}{\sqrt{2}} + \frac{1}{\sqrt{2}}
$$
\n
$$
z = \frac{1}{\sqrt{2}} \cdot \frac{z}{z} + \frac{1}{\sqrt{2}}
$$
\n
$$
z = \sqrt{2} \cdot \frac{z}{z} + \frac{1}{\sqrt{2}} \cdot \frac{z}{z} +
$$

The hyperbolic length of a piecewise differentiable path $f : [a, b] \rightarrow \mathbb{D}$ is given by

$$
length_{\mathbb{D}}(f) = \int_f \frac{2}{1-|z|^2} |dz|.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | ⊙ Q Q*

Proof

We consider the map $h : \mathbb{H} \to \mathbb{D}$ defined by

$$
h(z)=\frac{z-i}{iz-1}.
$$

Note that h maps $\mathbb H$ bijectively to $\mathbb D$, as well as $\partial \mathbb H$ to $\partial \mathbb D$ bijectively. Let $g(z) = h^{-1}(z)$. Then g maps $\mathbb D$ to $\mathbb H$ and has the formula

$$
g(z) = \frac{-z + i}{-iz + 1}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Let δ : [a, b] $\rightarrow \mathbb{D}$ be a (parametrisation of a) path in \mathbb{D} . Then $g \circ \delta : [a, b] \to \mathbb{H}$ is a path in \mathbb{H} . The length of $g \circ \delta$ is given by:

$$
length_{\mathbb{H}}(g \circ \delta) = \int_{a}^{b} \frac{|(g \circ \delta)'(t)|}{Im(g \circ \delta(t))} dt = \int_{a}^{b} \frac{|g'(\delta(t))||\delta'(t)|}{Im(g \circ \delta(t))} dt
$$

by chain rule. We have

$$
g'(z)=\frac{-2}{(-iz+1)^2}
$$

and

$$
Im(g(z)) = \frac{1 - |z|^2}{| - iz + 1|^2}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Hence

$$
length_{\mathbb{H}}(g \circ \delta) = \int_a^b \frac{2}{1 - |\delta(t)|^2} |\delta'(t)| dt.
$$

Then

$$
length_{\mathbb{D}}(\delta) = \int_a^b \frac{2}{1-|\delta(t)|^2} |\delta'(t)| dt = \int_{\delta} \frac{2}{1-|z|^2}.
$$

KORK@RKERKER E 1990

The distance between two points $z, z' \in \mathbb{D}$ is defined by taking the length of the shortest path between them. We denote $d_{\mathbb{D}}(z,z') = \inf\{\text{length}_{\mathbb{D}}(\delta)|\delta \text{ is a piecewise continuously}\}$ differentiable path from z to z' }. As we have used h to transfer the distance function on $\mathbb H$ to a distance function on D, we have

$$
d_{\mathbb{D}}(h(z),h(w))=d_{\mathbb{H}}(z,w).
$$

KID KA KERKER E 1990

The geodesics in the Poincare disc are the diameters of D and the arcs of the circles in $\mathbb D$ that meet $\partial \mathbb D$ at right-angles.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | ⊙ Q Q*

Proof

One can show that h is conformal, i.e. h preserves angles. Using the characterisation of lines in $\mathbb C$ to circles and lines in $\mathbb C$. Recall that h maps $\partial \mathbb{H}$ to $\partial \mathbb{D}$. Recall that the geodesics in \mathbb{H} are the arcs of the circles and lines that meet $\partial \mathbb{H}$ orthogonally. As h is conformal, the image in $\mathbb D$ of a geodesic in $\mathbb H$ is a circle or line that meets $\partial \mathbb D$ orthogonally.

イロトメタトメミドメミド (ミ) の女々

In the upper half-plane model $\mathbb H$ we often map a geodesic H to the imaginary axis and a point z_0 on that geodesic to the point *i*. The following is the analogue of the result in the Poincare disc model.

Let H be a geodesic in $\mathbb D$ and let $z_0 \in H$. Then there exists a *M* $\ddot{\text{o}}$ *bius transformation* of $\mathbb D$ that maps *H* to the real axis and z_0 to 0.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

References

Hyperbolic geometry, by James W. Anderson, Springer, 1999. (Chapter 3.1-3.5) Lecture notes by C. Walkden (Chapter 3-6)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

CLASSIFICATION OF MOBIUS MAP

PREREQUISITE KNOWLEDGE

ONE-POINT COMPACTIFICATION

- Let X be a topological space with topology \int such that X is locally compact and Hausdorff.
- Then there exists topological space $X^* = X \cup \{\infty\}$ such that X^* is compact and open sets in X are also open sets in X^*
- X^* is called the one-point compactification of X

CONNECTEDNESS

- Let (X, I) be topological space and $W \subset X$
- \bullet W is connected if there are no disjoint, nonempty open set U, V such that $W = U \cup V$

Remark: The connectedness of any set is preserved by homeomorphism (or continuous map)

QUOTIENT SPACE

- Let S be a non-empty set and \sim be an equivalence relation
- $[x] = \{y \in S : x \sim y\}$ is called the equivalence class $\int x$
- Then the set of all equivalence class in S is the quotient set (space)

MATRIX GROUP

- Let n be positive integer and F be a field
- General Linear Group $GL(n, F) = \{A \in F^{n \times n}: |A| \neq 0\}$
- Special Linear Group $SL(n, F) = \{A \in F^{n \times n}: |A| = 1\}$

GROUP ISOMORPHISM

- Let $(G,*)$ and $(H,+)$ be two groups
- $f: G \to H$ is a group isomorphism if

$$
\bullet f(a \ast b) = f(a) + f(b)
$$

• f is bijective

CLASSIFICATION: "WHICH SUBSETS OF THE OBJECT SHARE SOME COMMON CHARACTERISTICS?"

Linear Algebra

Classification Vector Space according to dimension Rank-nullity Theorem

Group Theory

Classification of finite simple group

Geometry

Classification of Isometries in Euclidean Plane

Classification of Isometries in Hyperbolic Plane

- $C_{\infty} = \mathbb{C} \cup \{\infty\}$
- One-point \bullet Compactification of C
- Homeomorphic to \bullet Riemann Sphere

MOBIUS GROUP $Mob(\mathbb{C}_{\infty})$

- Mobius Transformation is a map $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ in the form of $f(z) = \frac{az+b}{cz+d}$ with a, b, c, d $\in \mathbb{C}$ ad $-bc \neq 0$
- Basic Properties Mentioned Before
	- The set of all Mobius map forms a group $Mob(\mathbb{C}_{\infty})$ with operation defined as combination of map
	- Angle Preserving
	- Act transitively on ordered triples of distinct complex number
	- Map circle to circle
	- Homeomorphism

MATRIX REPRESENTATION OF $Mob(\mathbb{C}_{\infty})$

- Intuition:
	- The map is determined by 4 coefficient a, b, c, d
	- Represent them by 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and the combination of map can become operation on matrix!
	- The operation is actually matrix multiplication ! [Check it as an exercise]
- Question: $Mob(\mathbb{C}_{\infty}) \cong GL(2,\mathbb{C})$?

LIMITATION OF $GL(2, \mathbb{C})$

• Consider
$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
 and $\begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix}$ in $GL(2, \mathbb{C})$

- Obviously, they are different elements in $GL(2,\mathbb{C})$
- But they represent same Mobius map $\frac{az+b}{cz+d} = \frac{kaz+kb}{kcz+kd}$
- We solve this problem by using $SL(2,\mathbb{C})$ instead
- The ambiguity in matrix representation is reduced to only differ by \pm signs.

Remark: Although the representation in $SL(2,\mathbb{C})$ is not unique, it is concrete enough to tackle with many problems.

$$
Mob(\mathbb{C}_{\infty}) \cong PSL(2,\mathbb{C})
$$

- To solve the ambiguity in \pm signs, we introduce the relation $\sim: A \sim -A$
- The quotient set of $SL(2,\mathbb{C})$ under \sim is denoted as $PSL(2,\mathbb{C})$
- It is not hard to observe that both groups are isomorphic to each other

BEFORE NEXT SECTION…

• Every map
$$
\frac{az+b}{cz+d} \in Mob(\mathbb{C}_{\infty})
$$
 can be represented by $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ with $a'd' - b'c' = 1$

- The composition of map is just multiplication of matrix
- Some properties of matrix are vitally important for classifying $Mob(\mathbb{C}_{\infty})$

CONJUGATE AND INVARIANT

- Definition:
	- Let $A, B \in Mob(\mathbb{C}_{\infty})$ A is conjugate of B if $\exists S \in \text{Mob}(\mathbb{C}_{\infty})$ such that $A = SBS^{-1}$
- Example:

$$
\text{ } \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}=\begin{pmatrix} 0 & -i \\ -i & -i \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} -2i & i \\ i & 0 \end{pmatrix}
$$

- Equivalence Relation !
	- Exercise: Verify symmetricity, transitivity and reflexive property

FIXED POINT UNDER CONJUGATION

- Theorem 1:
- Suppose $A = SBS^{-1}$ and z_0 is a fixed point of B. Then $S(z_0)$ is a fixed point of A .
- Proof:
- $A(S(z_0)) = SBS^{-1}(z_0) = SB(z_0) = S(z_0)$
- By Theorem 1, number of fixed point is invariant under Conjugation.

TRACE IS INVARIANT

- Theorem 2:
- Suppose A, B are conjugate. Then $Tr(A) = Tr(B)$
- Proof:
- Suppose $A = SBS^{-1}$
- $Tr(A) = Tr(SBS^{-1}) = Tr(SS^{-1}B) = Tr(B)$

TRACE AND NUMBER OF FIXED POINTS

- Theorem 3
- Let $A \in Mob(\mathbb{C}_{\infty})$ with $A \neq id$
- A has one or two fixed points. A has one fixed point if and only if $Tr(A) = \pm 2$
- Proof:
- Consider Quadratic Equation $\frac{az+b}{cz+d} = z$ \bullet $cz^2 + (d a)z b = 0$
- So the number of roots of the equation is determined by $(d a)^2 + 4bc =$ $(d+a)^2-4 = Tr(T)^2-4$
- Hence, A has one fixed point when $Tr(T) = \pm 2$ and having two fixed points otherwise

SUMMARY

- Some maps in $Mob(\mathbb{C}_{\infty})$ are equivalent in terms of conjugate relation
- In that equivalence class, they sharing some common characteristics:
	- Same Trace
	- Same number of fixed points
- Mapping of Fixed Point under Conjugation
- The relation between Trace and Numbers of Fixed Points

CASE 1: ONE FIXED POINT z_0

- Through Conjugation $S = \frac{1}{z z_0}$, we can map the fixed point to ∞
- Suppose $T \in Mob(\mathbb{C}_{\infty})$ with ∞ as only fixed point
- Represent T as $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL(2, \mathbb{C})$ or $PSL(2, \mathbb{C})$
- $T(\infty) = \infty$ implies $c = 0$
- $ad bc = 1$ implies $d = \frac{1}{a}$
- $Tr(T) = +2$ implies $a = +1$
- Hence, $T(z) = z \pm b$ [Behave like translation in \mathbb{R}^n]
- We call this type of transformation $Parabolic$

CASE 2: TWO FIXED POINT z^+ , z^-

- Through conjugation $S = \frac{z-z^+}{z-z^-}$, we can map the fixed points to 0 and ∞
- Suppose $T \in Mob(\mathbb{C}_{\infty})$ has 0 and ∞ as fixed points
- $T(\infty) = \infty$ implies $c = 0$
- $ad bc = 1$ implies $d = \frac{1}{a}$
- $T(0) = 0$ implies $b = 0$
- Hence $T(z) = a^2z$
- Denoted $\lambda = a^2$, we can classify them according nature of λ

HYPERBOLIC

- If $\lambda \in \mathbb{R}$ and $|\lambda| \neq 1$ Then T is called Hyperbolic
- $T(z) = \lambda z$ behave like scaling in \mathbb{R}^n because $\lambda \in \mathbb{R}$

ELLIPTIC

- If $|\lambda| = 1$ Then we call T to be elliptic
- Using Poler Form $z = e^{\arg(z)i}$, $T(z) = \lambda z$ is actually rotation of $arg(\lambda)$ about the origin.

LOXODROMIC

- The remains cases are classified as $loxodromic$
- Write $\lambda = |\lambda| \times e^{\arg(\lambda)i}$, we can observe that $loxodromic$ is just composition of $elliptic$ transformation $e^{\arg(\lambda)i}z$ and $hyperbolic$ transformation $|\lambda|z$

CLASSIFICATION BY TRACE

- If $Tr(T) = \pm 2$ Then we immediately know that T is parabolic
- Similar thought applied to other cases !

•
$$
T(z) = \lambda z = \begin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & \sqrt{\lambda^{-1}} \end{pmatrix}
$$

• The value λ is called *multiplier* of T

TRACE OF HYPERBOLIC MAP

• Let $l = \log(\lambda)$

• Then
$$
Tr(T) = e^{\frac{t}{2}} + e^{-\frac{t}{2}} = 2 \cosh(\frac{t}{2})
$$

• Hyperbolic $\Leftrightarrow \lambda \in \mathbb{R}, \lambda \neq 1 \Leftrightarrow l = \mathbb{R} + 2n\pi i \Leftrightarrow |Tr(T)| > 2$

TRACE OF ELLIPTIC MAP

• Let $l = \log(\lambda)$

• Then
$$
Tr(T) = e^{\frac{t}{2}} + e^{-\frac{t}{2}} = 2 \cosh(\frac{t}{2})
$$

 \bullet Elliptic $\Leftrightarrow |\lambda| = 1, \lambda \neq 1 \Leftrightarrow l = i\theta, \theta = \arg(\lambda) \Leftrightarrow Tr(T) = 2 \cos(\theta) \Leftrightarrow$ $Tr(T) \in (-2,2)$

SUMMARY

• Given any $id \neq T \in Mob(\mathbb{C}_{\infty})$, we can classify it according to its trace.

FROM \mathbb{C}_{∞} TO D and H

- $Mob(H) = \{T \in Mob(\mathbb{C}_{\infty}) : T(H) \subset H\}$
- $Mob(D) = \{T \in Mob(\mathbb{C}_{\infty}) : T(D) \subset D\}$
- Exercise: Verify that $Mob(H)$ and $Mob(D)$ are subgroups of $Mob(\mathbb{C})$
- The classification of $Mob(D)$, $Mob(H)$ are easy if we know their matrix representation !

Theorem Every element of $M\ddot{\circ}b(\mathbb{D})$ either has the form

$$
p(z)=\frac{\alpha z+\beta}{\overline{\beta}z+\overline{\alpha}},
$$

or has the form,

$$
\rho(z)=\frac{\alpha\overline{z}+\beta}{\overline{\beta}\overline{z}+\overline{\alpha}},
$$

where
$$
\alpha, \beta \in \mathbb{C}
$$
 and $|\alpha|^2 - |\beta|^2 = 1$.

This result is proved by Team 2. The major application of this theorem is that $\forall T \in \text{Mob}(D), \text{Tr}(T) = 2\text{Re}(\alpha) \in \mathbb{R}$

MAP FROM D TO H

- Theorem 4:
- The map $C: z \rightarrow \frac{z-i}{z+i}$ on \mathbb{C}_{∞} satisfy $C(H) = D$
- Proof:
- $C(\infty) = 1, C(1) = -i, C(0) = -1$
- Hence, C map the circle of infinity ∂H to ∂D
- \cdot ∂D and ∂H separate \mathcal{C}_{∞} into two connected component
- Hence, $C(H) = D$ or $C(H) = \mathbb{C}_{\infty} \setminus (D \cup \partial D)$
- $C(i) = 0$ implies $C(H) = D$
CAYLEY TRANSFORMATION

- Definition: \bullet
- $C: H \to D$ defined by $C(z) = \frac{z-i}{z+i}$ is called the Cayley transformation from H to D
- The map is well-defined by Theorem 4

MATRIX REPRESENTATION OF $Mob(H)$

Theorem 5: \bullet

•
$$
\forall F \in Mob(H), F
$$
 has the representation $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, a, b, c, d \in R

· Proof:

• Define
$$
h: H \to H
$$
 by $h(z) = \frac{z - Re(F(i))}{Im(F(i))}$

- Since $Im(h(z)) = \frac{Im(z)}{Im(F(i))}$ and $Im(z) > 0$, $Im(F(i)) > 0$
- Hence, h is well-defined \bullet

THEOREM 5 (CONT.)

• Define
$$
g: H \to H
$$
 by $g = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$ for some $\theta \in R$

Suppose
$$
z = x + yi \in H
$$
, then write $cos(\theta) = c$, $sin(\theta) = s$

•
$$
g(z) = \frac{cz+s+ysi}{c-s-s-ysi} = \frac{1}{|c-s-s-ysi|^2} (cx + s + ysi)(c - xs + ys)
$$

• So
$$
Im(g(z)) = \frac{y}{|c-xs-ysi|^2} (c^2+s^2) > 0
$$

- Hence, q is well-defined.
- Define $T = g * h * F \in Mob(H)$

THEOREM 5 (CONT.)

- Direct computation yields, $T(i) = i$, $T'(i) = 1$
- Using Theorem 4, $A = CTC^{-1} \in Mob(D)$ and $A(0) = 0$, $A'(0) = 1$

• Since
$$
A = \frac{az+b}{\overline{b}z+\overline{a}}
$$
 implies $A' = \left(\frac{1}{\overline{b}z+\overline{a}}\right)^2 (|a|^2 - |b|^2)$

• As
$$
|a|^2 - |b|^2 = 1
$$
, $A'(0) = \frac{1}{a^2} = 1$. Combine $A(0) = 0$, $A'(0) = 1$

- We have $a = +1$, $b = 0$
- So $A = id$
- By the invariant of fixed point, $T = id$ implies $F = h^{-1}g^{-1}$
- So matrix representation of F will be product of matrix of h^{-1} , g^{-1}

SUMMARY

Hence, Trace of their representation is real !

MORE ON HYPERBOLIC MAP

 $Hyperbolic$ map are conjugate to

So $xy = c$ (*Hyperbola*) is an invariant curves under Hyperbolic map

, $a \in \mathbb{R}$

Also, its fixed points should location on ∂H or ∂D

MORE ON ELLIPTIC MAP

- The conjugation with fixed point at 0 and ∞ is a rotation.
- *Circle* will be an invariant curve.
- Fixed point will be located at interior of H or D

MORE ON PARABOLIC MAP

Exercise: Why this type of maps is called Parabolic?

The fixed point located at ∂H or ∂D

SUMMARY

- Matrix representation of group of Mobius **Transformation**
- Properties related to Conjugation, Fixed Point, Trace
- Classification of $Mob(\mathfrak{c}_{\infty})$ according to number of fixed point or trace
- Classification of $Mob(H)$, $Mob(D)$

CONVEX SET IN H

Convex set in \mathbb{R}^n

Convex set in H

- A set C is convex in \mathbb{R}^n if $\forall x, y \in C, l_{xy} \subset C$
- Parametrization: $\forall x, y \in \mathcal{C}, t \in$ $[0,1]$, $tx + (1-t)y \in C$

• A set C is convex in H if $\forall x, y \in$ C, the hyperbolic line l_{xy} are contained in Z

Line in \mathbb{R}^n

Line in H

- Theorem 1:
- Every Euclidean line is convex
- Theorem 1:
- Every Hyperbolic line is convex

Half Space in \mathbb{R}^n

- A line or an affine subspace of \mathbb{R}^n are called hyperplane
- Hyperplane can be parametrized as $P = \{ \langle a, x \rangle = c : x \in R^n \}$
- The hyperplane divide \mathbb{R}^n into two separate connected component V_1 , V_2
- V_1 , V_2 is called open half-space
- $V_i \cup P$ is called closed half-space

Half Space in H

- Every hyperbolic line divide H into two connected component V_1, V_2
- V_1 , V_2 is called open half-plane
- $V_i \cup P$ is called closed half-plane

Convex Half Space in \mathbb{R}^n

Convex Half Space in H

- Theorem 2:
- Every half-space is convex
- Theorem 2:
- Every half-plane is convex

Operation on convex set in \mathbb{R}^n Operation on convex set in H

- In general, intersection of convex set is convex
- While, union of convex set is not convex
- In general, intersection of convex set is convex
- While, union of convex set is not convex

Projection in \mathbb{R}^n

Projection in H

- Theorem 4:
- Let C be closed, convex set in \mathbb{R}^n , $z \in \mathbb{R}^n$.
- Then $\exists ! x \in C$, $d(x, z) = d(z, C)$
- Theorem 4:
- Let C be closed, convex set in H , $z \in H$.

 β ol zano

• Then $\exists ! x \in C, d_H(x, z) =$ $d_H(z, C)$

 $7de6$ $d_{H}(2, C) = \pi f \{ d_{H}(z, x) : x \in C \}$ compact ness. \downarrow \exists \exists (X_n) \subset \subset $s.t.$ $d_H(z_1x_0)$ \Rightarrow $d_H(z_1c)$

CHARACTERIZATION OF CONVEX SET

- Theorem 5:
- Let $C \subset H$
- C is convex \Leftrightarrow C is intersection of half-planes

REFERENCE

- Hyperbolic geometry, by James W. Anderson, Springer, 1999.
- Lecture notes by C. Series